ebook img

Diamond Detectors for the TOTEM Timing Upgrade PDF

3.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diamond Detectors for the TOTEM Timing Upgrade

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH TOTEM2016–05 CERN-PH-EP-2016-317 17December2016 17December2016 7 1 Diamond Detectors for the TOTEM Timing Upgrade 0 2 n a TheTOTEMCollaboration J 8 1 G.Antcheva),P.Aspell9),I.Atanassova),V.Avati8),J.Baechler9),V.Berardi5b,5a), M.Berretti3a,9),E.Bossini7b),U.Bottigli7b),M.Bozzo6a),P.Broul´ım1a),A.Buzzo6a), t] F.S.Cafagna5a),M.G.Catanesi5a),M.Csana´d4a,b),T.Cso¨rgo˝4a,4b),M.Deile9), e d F.DeLeonardis5c,5a),A.D’Orazio5c,5a),M.Doubek1c),K.Eggert10),V.Eremind),F.Ferro6a),A. - Fiergolski9),F.Garcia3a),V.Georgiev1a),S.Giani9),L.Grzanka8,c),C.Guaragnella5c,5a), s n J.Hammerbauer1a),J.Heino3a),A.Kareve) J.Kasˇpar1b,9),J.Kopal1b),V.Kundra´t1b),S.Lami7a), .i G.Latino7b),R.Lauhakangas3a),R.Linhart1a),M.V.Lokaj´ıcˇek1b),L.Losurdo7b), s c M.LoVetere6b,6a),F.LucasRodr´ıguez9),D.Lucsa´nyi9),M.Macr´ı6a),A.Mercadante5a), si N.Minafra9,5b),S.Minutoli6a),T.Naaranoja3a,3b) F.Nemes4a,b),H.Niewiadomski10), y T.Nova´k4a,4b),E.Oliveri9),F.Oljemark3a,3b),M.Oriunnof),K.O¨sterberg3a,3b),P.Palazzi9), h p L.Palocˇko1a),V.Passaro5c,5a),Z.Peroutka1a),V.Petruzzelli5c,5a),T.Politi5c,5a),J.Procha´zka1b), [ F.Prudenzano5c,5a),M.Quinto9),E.Radermacher9),E.Radicioni5a),F.Ravotti9),E.Robutti6a), 1 C.Royong),G.Ruggiero9),H.Saarikko3a,3b),A.Scribano7a),J.Smajek9),W.Snoeys9), v J.Sziklai4a),C.Taylor10),N.Turini7b),V.Vacek1c),J.Welti3a,3b),P.Wyszkowski8),K.Zielinski8) 7 2 1aUniversityofWestBohemia,Pilsen,CzechRepublic. 2 5 1bInstituteofPhysicsoftheAcademyofSciencesoftheCzechRepublic,Praha,CzechRepublic. 0 1cCzechTechnicalUniversity,Praha,CzechRepublic. . 1 2NationalInstituteofChemicalPhysicsandBiophysicsNICPB,Tallinn,Estonia. 0 3aHelsinkiInstituteofPhysics,Helsinki,Finland. 7 1 3bDepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland. : 4aWignerResearchCentreforPhysics,RMKI,Budapest,Hungary. v i 4bEKEKRC,Gyo¨ngyo¨s,Hungary. X 5aINFNSezionediBari,Bari,Italy. r a 5bDipartimentoInterateneodiFisicadiBari,Bari,Italy. 5cDipartimentodiIngegneriaElettricaedell’Informazione-PolitecnicodiBari,Bari,Italy. 6aINFNSezionediGenova,Genova,Italy. 6bUniversita` degliStudidiGenova,Italy. 7aINFNSezionediPisa,Pisa,Italy. 7bUniversita` degliStudidiSienaandGruppoCollegatoINFNdiSiena,Siena,Italy. 8AGHUniversityofScienceandTechnology,Krakow,Poland. 9CERN,Geneva,Switzerland. 10CaseWesternReserveUniversity,Dept. ofPhysics,Cleveland,OH,USA. Abstract Thispaperdescribesthedesignandtheperformanceofthetimingdetectordevelopedbythe TOTEMCollaborationfortheRomanPots(RPs)tomeasuretheTime-Of-Flight(TOF)ofthe protonsproducedincentraldiffractiveinteractionsattheLHC.ThemeasurementoftheTOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOFdetectorisbasedonsinglecrystalChemicalVaporDeposition(scCVD)diamondplates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive eventsuptoaninteractionpileupofabout1. Adedicatedfastandlownoiseelectronicsforthe signalamplificationhasbeendeveloped. Thedigitizationofthediamondsignalisperformed bysamplingthewaveform. Afterintroducingthephysicsstudiesthatwillmostprofitfromthe additionofthesenewdetectors,wediscussindetailtheoptimizationandtheperformanceof thefirstTOFdetectorinstalledintheLHCinNovember2015. Keywords: TOF,Timingdetectors,Diamonddetectors,LHC PACS:29.40.Wk,29.40.Gx aINRNE-BAS,InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria. bDepartmentofAtomicPhysics,ELTEUniversity-Budapest,Hungary cInstituteofNuclearPhysics,PolishAcademyofScience,Krakow,Poland. dIoffePhysical-TechnicalInstituteofRussianAcademyofSciences,St.Petersburg,RussianFederation eJINR,Dubna,Russia. fSLACNationalAcceleratorLaboratory,StanfordCA,USA. gUniversityofKansas,Lawrence,KS,USA. TOTEMtimingdetectors 1 Contents 1 Introduction 3 2 TheTOTEMApparatus 3 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 TheExistingRomanPotTrackingDetectors . . . . . . . . . . . . . . . . . . . . . 4 2.3 TOFMeasurementinTOTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 TheTimingDetectors 5 3.1 RequirementsandDesignPrinciples . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 TheDiamondSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 DiamondCrystalCharacterization . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4.1 TheAmplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.2 TheHybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.3 MechanicalChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5 Digitization: theSAMPICChip . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 ClockDistributionandDAQBoard . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 TestsandDetectorPerformance. 16 4.1 EfficiencyoftheSegmentedDiamondDetector. . . . . . . . . . . . . . . . . . . . 17 4.2 TimePrecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 DetectorPackageIntegrationandInstallation 21 5.1 TheHVdistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 TheCoating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 VacuumOperationandCooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.4 CommissioningandOperationintheLHCTunnel . . . . . . . . . . . . . . . . . . 22 2 TheTOTEMCollaboration(G.Antchevetal.) 6 Conclusions 23 TOTEMtimingdetectors 3 1 Introduction TheTOTEMexperimentatCERN’sLargeHadronCollider(LHC)wasoptimizedforthemeasure- mentoftheelasticppscatteringoverafour-momentumtransfersquared|t|rangingultimatelyfrom ≤10−3GeV2 to∼10GeV2 andhasmeasuredthetotalppcross-sectionindedicatedspecial-optics runs[1–4]andstudiedtheinelasticrate[2,5]. Diffractivescatteringrepresentsauniquetoolforinvestigatingthedynamicsofstronginteractions andprotonstructure. Theseeventsaredominatedbysoftprocesseswhichcannotbecalculatedwith perturbative QCD. Various model calculations predict diffractive cross-sections that are markedly different at the LHC energies [6–8]. A special optics configuration of the accelerator (large β∗) permitstoseeallmassesincentraldiffractivetopologies. A recently approved upgrade of the TOTEM detectors [9] will add the possibility to measure the arrivaltimeoftheleadingprotonsintheRomanPots(RP).Amongmanyphysicschannelstheup- graded system will provide an unprecedented sensitivity for low mass resonances (with particular emphasisonglueballcandidates),exclusiveCentralDiffractive(CD)dijets,charmoniumstatesand events with missing mass signatures [10]. Even at very low pileup, for inclusive CD events and in particular for events with missing momentum the association of the protons to the CMS vertex by using only the tracking variables is problematic. Here, as well as in all CD events measured at moderate pileup, the proton Time-Of-Flight (TOF) measurement becomes crucial. As an ex- ample,at µ =50%1,afive-foldenhancementoftheinclusiveCDpuritycanbeobtainedfromthe installationoftheTOFdetectorintheRP,assumingatimeprecisionof50ps[11]. 2 TheTOTEMApparatus 2.1 Overview The TOTEM experiment [12] is composed of three sets of subdetectors placed symmetrically on both sides of the interaction point: the Roman Pot detectors identify leading protons whereas the T1andT2telescopesdetectchargedparticlesintheforwardregionfromprotondiffractivedisso- ciation. T2consistsofGasElectronMultipliersthatdetectchargedparticleswith p >40MeV/c T at pseudo-rapidities of 5.3<|η|<6.5. The T1 telescope consists of Cathode Strip Chambers that measure charged particles with p >100 MeV/c at 3.1< |η| <4.7. T1 and T2 can be used to tag T rapiditygapsinCDevents(p+p→p+X+p). Atpresent, todetectleadingprotonsscatteredat verysmallangles,siliconsensorsareplacedinmovablebeam-pipeinsertions–so-called“Roman Pots” (RP), special sections of the LHC vacuum chamber that can be positioned very close to the circulating beam [13]. In order to maximize the experiment’s acceptance for elastically scattered protons,theRPareabletoapproachthebeamcentretoatransversedistanceassmallas1mmor, equivalently,toafewσ (thetransversebeamsize). beam EachRPstationiscomposedoftwounitsseparatedbyadistanceofabout5m. Aunitconsistsof 1µisdefinedastheaveragenumberofinelasticproton-protoninteractionsperbunchcrossing. 4 TheTOTEMCollaboration(G.Antchevetal.) threeRPs,twoapproachingtheoutgoingbeamverticallyandonehorizontally. Thedetectorsinthe horizontalpotcompletetheacceptancefordiffractivelyscatteredprotons. AllRPsarerigidlyfixed withintheunit,togetherwithaBeamPositionMonitor(BPM). 2.2 TheExistingRomanPotTrackingDetectors EachRPisequippedwithastackof10siliconstripdetectorsdesignedwiththespecificobjective ofreducing toonlya fewtensofmicrometers [14]theinefficient area atthedetector edgeclosest to the beam. The 512 strips with 66µm pitch of each detector are oriented at an angle of +45◦ (fiveplanes)and−45◦ (fiveplanes)withrespecttothedetectoredgefacingthebeam. Duringthe measurementthedetectorsinthehorizontalRPsoverlapwiththeonesintheverticalRPs,enabling aprecise(10µm)relativealignmentofthedetectorsinthethreeRPsofaunitbycorrelatingtheir positions via common particle tracks. These detectors are described in detail in [13]. To provide multi track separation capability TOTEM has added in 2014 in each arm one RP unit tilted in the verticalplaneby8◦. 2.3 TOFMeasurementinTOTEM In order to improve the experiment’s capability to explore and measure new physics in CD pro- cesses TOTEM has proposed an upgrade program [9] which foresees adding timing capability to the proton detectors installed in the very forward region. Common CMS-TOTEM data taking is foreseen during the LHC Run 2, with a special LHC-optics configuration for which the proton acceptance is optimal (all ξ =∆p/p for |t| >0.04 GeV2). The addition of proton Time-Of-Flight (TOF)detectorsintheTOTEMforwardprotonarmsallowstoreconstructthelongitudinalinterac- tionpositionandthustoassociatethistotheprotonvertexreconstructedbytheCMStracker. √ The CD interactions measured by TOTEM at s=13 TeV are characterized by having two high energy protons (with momentum greater than 5 TeV/c) scattered at less than 100 µrad from the beamaxis. ThetrackingoftheprotonsisdonebysiliconstripdetectorsinstalledintheRPs. With the addition of protonTOF detectors, it will be possible to measure the difference of the arrival times, which is directly proportional to the longitudinal position of the vertex. In fact ift , t are 1 2 thearrivaltimesoftheprotonscomingfromaCDinteractioninthetwoRParms,thelongitudinal vertexpositiongivenbyz=c(t −t )/2. 1 2 During the programmed joint CMS-TOTEM data taking when the two experiments share a com- mon trigger, the reconstruction of the proton vertex position allows, even in presence of event pileup, the association with one of the CD vertex reconstructed by CMS and therefore to com- pletelyreconstructtheevent. ThetimingdetectorwillbeinstalledinfourTOTEMverticalRomanPots(RP)locatedat∼220m onbothsidesoftheinteractionpoint5(IP5)oftheLHC. TOTEMtimingdetectors 5 3 TheTimingDetectors 3.1 RequirementsandDesignPrinciples The physics program determines the specifications for the timing detector: in order to obtain a precision on the longitudinal interaction vertex (Z = c∆t/2) of σ ∼1 cm, an overall time vertex Z precision σ(∆t) ∼50 ps for the measurement of the proton track timing is required. The track distribution at the position of the timing detectors due to diffractive events and to overlapping background is not uniform and has been measured from RP tracking data, see Figure 1. The average number of particles per bunch crossing in one of the RP is about 0.2 (including the beam background)atµ =0.5%[15]. Fig.1:ThedistributionoftheparticlestraversingtheRPplaneat220mwiththeTOFdetectortobeinstalled intopandbottomRPforβ∗=90moptics. TheTOFdetectorswillbeinstalledintopandbottomRPs. Thedetectorhastobesegmentedintopixelstominimizetheoccupancy2 ofeachcell. Toguaranteeuniformoccupancyandasmallnumberofcellsinthedetectorapatternwithpixelsof different sizeshas beensimulated [15] andoptimized inorder to minimize the inefficiencydue to thesimultaneouspresenceoftwohitsinthesamecell. Astheoccupancyinthisscenarioisanyway very low, this selection hardly affects the efficiency. The optimized detector geometry with eight diamond plates obtained for a high-β∗ optics configuration at µ= 0.5 is shown in Figure 2. The pixelsizeintheverticaldirectionyvariesbyalmostafactorsixfrom0.7mmto4.2mm. 2numberofparticlestraversingthedetectorcell/pixelinonebunchcrossing. 6 TheTOTEMCollaboration(G.Antchevetal.) Atµ =50%,theinefficiencyintroducedbythepileupisapproximately0.6%. Areducedgeometryhasbeenadoptedtobuildtheprototypedescribedhere: itcontainsonlyfour diamondplatesandisshowninFigure3. Thefourdiamondsingle-pixelplatesthatarenotincluded wouldcoveronlyanextra10%ofacceptance. Fig. 2: Optimized layout of the detector pixels. On the right its position during physics data taking is outlinedonthetrackdistributionofFigure1. One detector package contains four identical planes, each equipped with four plates of 4.5× 4.5mm2 and 500µm thick scCVD diamond metalized with a pattern of one, two or four pixels. Ifonecanbuildasinglesensorcapableofmeasuringwithatimeprecisionoftheorderof100ps, thenwithtimemeasurementsfromfourdetectorsonereachestherequiredoveralltimeprecisionof about50ps. Withsuchaprecisionforthemeasurementoftheprotontracktimingthelongitudinal interactionvertexcanbedeterminedwithanuncertaintyof∼1cm. Aftersomepreliminarymeasurementsinatestbeamwithadiamondsensorassembledwithelec- tronicsofpreliminarydesign,wesawthatscCVDdiamonddetectorswithacustom-builtamplifier wouldmatchalltherequirementsofthetimingdetectorneededfortheTOTEMupgrade. Withanappropriatemetalization, oneobtainsagoodcontacttothefaceofthediamondsensor; it is fairly easy (fast and economic) then to implement a pattern with pixels of different sizes on a diamondcrystalsurfacebymeansofasimplemetalization. Duetotheextremelyhighimpedance of the diamond material, the difference in pixel size will barely affect the time response of the signal. Diamond sensors show also a better radiation hardness [16] and shorter charge collection timesthanothersemiconductorsensors[17,18]. TOTEMtimingdetectors 7 Fig.3: LayoutanddimensionsofthepixelsoftheTOTEMtimingdetectorsimplementedanddescribedin thispaper. Additional technical requirements were taken into account to design a detector system that could beimplementedandproperlyfunctioninthehighradiationenvironmentoftheLHCtunnel. Inthe followingsectionswedetailthestudiesperformedtoensurethatscCVDdiamonddetectorswillbe abletomeetthetimingprecisionrequiredbythephysicsprogram. TheTOFsystemmainblockswhichwillbedescribedindetailinthefollowingsectionsisshown inFigure4. 3.2 TheDiamondSensors The use of detector grade scCVD diamond for use in particle detectors has been proposed in the past and extensively studied [18]. It is an ideal material for detecting particles due to its high electronandholemobilityand>99%chargecollectionefficiency. Thesedetectorsarenowwidelyusedinmanyspecificapplicationsandexperiments,albeitstillona smallscale. TheavailabilityonthemarketofdetectorgradescCVDdiamonddetectorsofdifferent sizesandthicknesseshasgreatlyimprovedinrecentyears. Severalcompanies3 offercustomsizes andthicknesseswithreasonabledeliverytime. 3 ElementSixLtd., KingsRidePark, Ascot, BerkshireSL58BP,UK., Diam2Tek, Irma-Feldweg-Straße8, 75179 Pforzheim,Germany,amongfewothers. 8 TheTOTEMCollaboration(G.Antchevetal.) Top Vertical S haper x12 x12 Ampli fie r x12 48 channel Pre-a mp x12 Hyb rid Readout board Slow x4 boar d control SAMPIC (CCUM) mezz. DAQ One arm of the FPGA AND p Beam TOTEM (SF2) CONTROL timing system SAMPIC m e z z . O p t i c a l x4 bHoy abrrdid x3 (GliOnkH ) Prex-1a2 x12 Am plifie rx 12 Sh ape r x1 2 48 channel Bottom Vertical Fig.4: TheTOFsystemfortheTOTEMVerticalRPupgrade. 3.3 DiamondCrystalCharacterization Electrodes on both sides are needed to collect the charges and read out the electric signal. Thin metal layers on both the top and bottom surface of the crystal generate the proper field and allow forconnectiontotheamplifier. However, makingagoodohmicelectricalcontactwiththecrystal structure is a delicate process. Metalization of the pixels on the surface of the diamond in some instances led to poor collection of charge or to a particle-rate dependent reduction of the charge collection [18]. The occurrence of ‘charging’ and ‘radiation’ damage of the diamond sensors has alsobeenstudiedinhighfluenceHighEnergyPhysicsexperiments,seeforexample[19]. ThemetalizationareafortheTOTEMplatescovers4.2×4.2mm2 leavinganon-metalizedborder regionof150µminordertoavoidenhancementofsurfaceleakagecurrentsanddischargesthrough the diamond edge. The metalization mask is aligned with better than 100µm precision on the diamond plate. When more than one pixel is present on one plate, the non metalized separation betweenpixelsis100µm. Thediamondplates(fourareneededperhybrid)aregluedonthehybrid PCBincontacttoeachotherandonemayconsidertheirmaximumdistancetobelessthan50µm. Oftenthemetalizationprocessesarecompanyspecificandconfidential. Wehavetestedandcom- pareddifferentmetalizationtechniquesforthediamondsensorsassuggestedandprovidedby: – GSI4 (Cr-50nm+Au-150nm) – AppliedDiamondInc. (USA)5 (Cr-50nm+Au-150nm) 4http://www.gsi.de 5http://usapplieddiamond.com/

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.