ebook img

Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields PDF

418 Pages·2013·3.133 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields

Frontiers in Mathematics Yuan-Jen Chiang Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields Frontiers in Mathematics Advisory Editorial Board Leonid Bunimovich(Georgia Instituteof Technology, Atlanta) Benoˆıt Perthame(Universite´ Pierre et Marie Curie, Paris) Laurent Saloff-Coste(Cornell University, Ithaca) Igor Shparlinski (Macquarie University, New South Wales) Wolfgang Spro¨ssig (TU Bergakademie Freiberg) Ce´dric Villani (Institut Henri Poincare´, Paris) Yuan-Jen Chiang Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields Yuan-JenChiang DepartmentofMathematics UniversityofMaryWashington Fredericksburg,VA USA ISSN1660-8046 ISSN1660-8054(electronic) ISBN978-3-0348-0533-9 ISBN978-3-0348-0534-6(eBook) DOI10.1007/978-3-0348-0534-6 SpringerBaselHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013940741 MathematicsSubjectClassification(2010):58E20,58E15,58E12,81T13,53A10,53C07,53C12, 53C43,49Q05,35J47,35J48,35K05,35L70,35J10,32Q15 ©SpringerBasel2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerBaselispartofSpringerScience+BusinessMedia(www.birkhauser-science.com) InMemoryofProfessorJamesEells and ProfessorJosephH.Sampson Thenamesofthesetwopioneersofthetheory ofharmonicmapswill beengravedinthe mindsofall mathematicianswho workon harmonicmaps,wave maps,andYang-Mills fields,fortheirgreat andeverlasting contributions. Introduction We present an overview of the developmentsof harmonic maps, wave maps, and Yang-Mills fields into biharmonic maps, biwave maps, and bi-Yang-Mills fields. ThetheoryofharmonicmapsbetweenRiemannianmanifoldswasfirstestablished by Eells and Sampson (Chiang’s Ph.D. adviser) [129] in 1964. Wave maps are harmonic maps on Minkowski spaces and were studied in the early 1990s. In the last two decades, there were many new developments in wave maps achieved by a numberofmathematicians.Yang-Millsfieldsarethe criticalpointsofthe Yang- Millsfunctionalsofconnectionswhosecurvaturetensorsareharmonic.Theywere firstexploredbyanumberofphysicistsinthe1950s,andsincethenthereweremany new developments in this subject. Biharmonic maps, which generalize harmonic maps,werefirststudiedbyJiang[196–198]in1986.Inrecentyears,therehasbeen progressinbiharmonicmaps,accomplishedbyquiteafewmathematicians.Biwave maps are biharmonic maps on Minkowski spaces which generalize wave maps, and they were first studied by Chiang [75,76] in 2009 and with Wolak [84] later. Bi-Yang-Millsfields,whichgeneralizeYang-Millsfields,werefirstinvestigatedby Ichiyama,Inoguchi,andUrakawa[191,192]in2009.Moreover,exponentiallyhar- monicmapswerefirstintroducedbyEellsandLemaire[125]in1990.Exponential wavemapsareexponentiallyharmonicmapsonMinkowskispaces,whichwerefirst studiedbyChiangandYang[88]in2007.ExponentialYang-Millsconnectionswere firstexploredbyMatsuuraandUrakawa[260]in1995.Sincethisbookcoversbroad topicsinterveningharmonicmaps,wavemaps,Yang-Millsfields,biharmonicmaps, biwavemaps,bi-Yang-Millsfields,exponentiallyharmonicmaps,exponentialwave maps,andexponentialYang-Millsconnections,it isimpossibleto describedetails completelyandextensively.However,wetrytopresentthemostcrucialingredients oftherecentdevelopmentsofthetopics. Harmonic maps were first introduced by Sampson in the hope of obtaining a homotopyversionof the highly successfulHodge theory of cohomologyin 1952. Notlongafterthathisthencolleague,JohnNash(oneofthethreeNobellaureates in Economicsin 1994) proposed a quite differentbut equivalentdefinition – both of them were Moore Instructors at MIT at the time. Fuller [150] also came upon harmonicmapsin 1954.The definition,whetherin termsof the energyfunctional vii viii Introduction or the Euler-Lagrangeequations,seemsverynaturalto us today,butit was notso obvioushalfacenturyago. Eells and Sampson [129] collaborated on the first paper on harmonic maps of Riemannian manifolds at the Institute for Advanced Study at Princeton in 1964. This paper is usually considered as the pioneering work in harmonic maps. They alsopublishedasecondandthirdjointpaper[130,131]afterwards. Withaneyetowardthephysicalconceptofkineticenergy.mv2/,aharmonicmap 2 f W.Mm; g /!.Nn; h /fromanm-dimensionalRiemannianmanifoldintoan ij ˛ˇ n-dimensional Riemannian manifold is defined as a critical point of the energy functional Z Z 1 1 E.f/D jdfj2dvD h f˛fˇgijdv; (1) 2 2 ˛ˇ i j M M wheredvisthevolumeformofM determinedbythemetricg. Inordertoderive the associated Euler-Lagrange equations, we consider a one-parameter family of mapsff g2C1.M (cid:2)Œ0; 1(cid:2); N/fromacompactmanifoldM (withoutboundary) t into a Riemannian manifold N such that f is the endpointof a segment starting t at f.x/.D f .x// determinedin length and direction by the vector field fP.x/. If 0 M is a non-closedmanifold,we assume that fP.x/ hascompactsupport,which is contained in the interior of M. We now compute the first variation of the energy functional: ˇ Z ˇ Z d ˇ ˇ EP.f/ D E.f /ˇ D .df ; D df /ˇ dv D .df;DfP/dv Zdt t tD0 Z M t t t tD0Z M D div.w/dv(cid:3) .(cid:3)f;fP/dv D (cid:3) .(cid:3)f;fP/dv; 8fP; (2) M M M by the divergencetheorem,where(cid:3)˛.f/ D trace .Ddf/; D is the connectionon g T(cid:2)M˝f(cid:3)1TNinducedbytheLevi-CivitaconnectionsonM andN,div.w/Dwj ; jj andwj D h f˛fPˇgij isavectorfieldonM.Themapf W M ! N isharmonic ˛ˇ i ifthetensionfield (cid:3)˛.f/ Dtrace .Ddf/Dgijf˛ Dgij.f˛ C(cid:4)0˛ fˇf(cid:5)/ g ijj i;j ˇ(cid:5) i j Dgij.f˛(cid:3)(cid:4)kf˛C(cid:4)0˛ fˇf(cid:5)/ (3) ij ij k ˇ(cid:5) i j vanishesidentically,wheref˛ D @f˛; f˛ D @2f˛ ; f˛ D f˛ (cid:3)(cid:4)kf˛,and(cid:4)k i @xi ij @xi@xj i;j ij ij k ij and(cid:4)0˛ aretheChristoffelsymbolsoftheLevi-CivitaconnectionsonM andN, ˇ(cid:5) respectively. Assumethatf.x/ D f .x/isharmonicandthat(cid:6) D @ft.Wenextcomputethe 0 @t secondvariationoftheenergyfrom(2): Introduction ix ˇ Z ˇ d2 ˇ d ˇ ER.f/ D E.f /ˇ D (cid:3) .(cid:3)f ; (cid:6)/dvˇ dtZ2 t tD0 M dt t ˇ tD0 ˇ D(cid:3) Œ.D (cid:3)f ; (cid:6)/C.(cid:3)f ; D (cid:6)/(cid:2)ˇ dv: (4) t t t t M tD0 Att D0,f.x/isharmonicandtheabovesecondvariationbecomes Z ˇ ˇ ER.f/D(cid:3) .D (cid:3)f; (cid:6)/ˇ dv: t M tD0 The components of D (cid:3)f are f˛ D @fi˛jj C (cid:4)0˛ f(cid:7)(cid:6)(cid:8): By Eisenhart [137], t ijjjt @t (cid:7)(cid:8) ijj f˛ (cid:3)f˛ D(cid:3)Rk f˛CR0˛ fˇf(cid:5)(cid:6)(cid:7)andusingthecurvatureformulaonM(cid:2) ijjjt ijtjj ijt k ˇ(cid:5)(cid:7) i j Œ0; 1(cid:2) ! N;thefirstcurvaturetermvanishesandf˛ D f˛ CR0˛ fˇf(cid:5)(cid:6)(cid:7), ijjjt ijtjj ˇ(cid:5)(cid:7) i j whereR0 isthe RiemanniancurvatureofN:But f˛ Df˛ D(cid:6)˛; andso f˛ D ijt tji ji ijjjt (cid:6)˛ CR0˛ fˇf(cid:5)(cid:6)(cid:7):Therefore,D (cid:3)f hascomponents jijj ˇ(cid:5)(cid:7) i j t gij(cid:6)˛ CgijR0˛ fˇf(cid:5)(cid:6)(cid:7): (5) jijj ˇ(cid:5)(cid:7) i j Denotethefirsttermby.4(cid:6)/˛:Thuswearriveat Z ER.f/ D (cid:3) Œ.4(cid:6); (cid:6)/CgijR0 (cid:6)˛fˇf(cid:5)(cid:6)(cid:7)(cid:2)dv: (6) ˛ˇ(cid:5)(cid:7) i j M Usingtheintegrationbypartsgivesd.D(cid:6); (cid:6)/D.4(cid:6); (cid:6)/C.D(cid:6); D(cid:6)/,andthenthe divergencetheoremrecasts(6)into Z h i ER.f/D jD(cid:6)j2(cid:3)gijR0 (cid:6)˛fˇf(cid:5)(cid:6)(cid:7) dv: (7) ˛ˇ(cid:5)(cid:7) i j M (Recallthat(cid:6) isasectionoff(cid:3)1.TN/;i.e.,avectorfieldalongf:Forgiven(cid:6),we obtainasuitablevariationoff bysettingf .x/Dexp t(cid:6).x/; a 2M:)IfN has t f.a/ negativesectionalcurvature,i.e.,R0 (cid:9)˛(cid:10)ˇ(cid:9)(cid:5)(cid:10)(cid:7) (cid:4) 0forarbitraryvectorfields(cid:9) ˛ˇ(cid:5)(cid:7) and (cid:10), then it follows from (7) that ER.f/ (cid:5) 0; so every harmonic map is a local minimumfortheenergyE. Observe that if all the f are harmonic for t near 0, then (cid:3)f D 0; and also t t D (cid:3)f D0:By(4)–(6),thisistheJacobiequation(att D0),namely, t t J .(cid:6)/D4(cid:6)CR0.df;df/(cid:6) Dgij(cid:6)˛ CgijR0˛ fˇf(cid:5)(cid:6)(cid:7) D0: (8) f jijj ˇ(cid:5)(cid:7) i j Itisalinearequationfor(cid:6).Solutionsof(8)arecalledJacobifieldsalongf.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.