ebook img

Development of an Accurate 3D Monte Carlo Broadband Atmospheric Radiative Transfer Model PDF

168 Pages·2016·5.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of an Accurate 3D Monte Carlo Broadband Atmospheric Radiative Transfer Model

©2016byAlexandraL.Jones. Allrightsreserved. DEVELOPMENTOFANACCURATE3DMONTECARLOBROADBAND ATMOSPHERICRADIATIVETRANSFERMODEL BY ALEXANDRAL.JONES DISSERTATION Submittedinpartialfulfillmentoftherequirements forthedegreeofDoctorofPhilosophyinAtmosphericSciences intheGraduateCollegeofthe UniversityofIllinoisatUrbana-Champaign,2016 Urbana,Illinois DoctoralCommittee: ProfessorLarryDiGirolamo,Chair ResearchScientistBrianJewett ProfessorRobertRauber AssociateProfessorNicoleRiemer Abstract Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth’s properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth’s atmosphere all parameterize radiative transfer with approximations that reduce or ne- glect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolu- tionmodelingandremotesensingobservationsofclouds,fromshallowcumulustodeep convectiveclouds,andgivenoureveradvancingtechnologicalcapabilities,theseapprox- imationshavebeenexposedasinappropriateinmanysituations. Thispresentsaneedfor accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactionsbetweencloudsandradiationtojudgetheaccuracyofsimilarbutlessexpen- sive models and to aid in new parameterizations that take into account 3D effects when coupledtodynamicmodelsoftheatmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer (“IMC-original”) Model is the task at hand. It has involved incorporating (1) thermal emission sources ii of radiation (“IMC+emission model”), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary range of the electromagnetic spectrum (“MCBRaT-3D” model) to produce heating rates relevant to atmospheric dynamics, and (3) developing tools to interface between the model and databases of single scattering properties of the real atmosphere. Special attention has been paid to practical aspects of implementationforhighperformancecomputingonBlueWaters. Incrementaltestsofthe accuracyofeachnewcomponenthavebeenperformedbasedoncarefullydesignedana- lytical solutions, culminating in the “MCBRaT-3D” model’s ability to reproduce a profile of broadband atmospheric heating rate from a published intercomparison study and its initial use to provide benchmarking results for the evaluation of other 3D models. The models, tools, and databases developed herein provide a significant contribution to the fieldofatmosphericscience,especiallybymakingthempubliclyavailableforfurtherde- velopment and use. They will enable quantitative evaluations of radiative transfer mod- els and parameterizations by providing a highly accurate solution to many 3D radiative transferproblemsencounteredintheatmosphericsciences. iii Tothosewhosufferfromimpostorsyndrome,rememberit’swhattodoandhowtodoitthatare therealquestions,neverifyoucandoit. iv Acknowledgments This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois. Blue Waters is a joint effort of the University of IllinoisatUrbana-ChampaignanditsNationalCenterforSupercomputingApplications. ThisworkwasalsosupportedbyNASAHeadquartersundertheNASAEarthandSpace ScienceFellowship(NESSF)program-GrantNNX11AL39H. I have been fortunate enough to spend 4 years as a pre-doctoral fellow, 3 years in the NESSF program, and 1 year as a Blue Waters Graduate Fellow. I gratefully acknowledge these programs as they have allowed me to pursue research directions I may not have had the opportunity to otherwise. A few additional semesters of support were provided by NSF and NASA grants, specifically NASA grant NNX14AJ27G and NSF grant ATM- 08-54954. There are a number of individuals who have provided guidance to me as I grew my scientific computing knowledge. Without that guidance my dissertation research would have taken a very different path and I would not be able to call myself a computational scientist. This includes friends: Matt Erickson, Phil Miller, Justin McHugh; Department ofAtmosphericSciencesStaff: BillChapman,BrianJewett,KenPatten,DavidWojtowicz; andBlueWaterssupportstaff: GalenArnold,CraigSteffen,andMarkStraka. Imustalsoacknowledgethesupportobtainedthroughnumerousconversationsabout 3DradiativetransferamongtheDiGirolamoresearchgroupinthecourseofmyPhDdis- sertation research, most notably with Allison Houghton, Daeven Jackson, Megan King, v Max Smith, and Guangyu Zhao. I must especially acknowledge my advisor, Larry Di Girolamo, who instilled in me both a drive to never settle for anything less than my best workaswellasaconfidenceinmyabilitytoproducetopofthelinescience. I am grateful to the Department of Atmospheric Sciences at the University of Illinois foritscommitmenttosupportingitsgraduatestudentsinallaspectsoftheirprofessional development, from administrative support from staff, to opportunities for leadership, suchasthatprovidedtomethroughthedevelopmentoftheMidwestCloudandAerosol Forum,totheopendoorpolicythatencouragescollaborationandmentorshipacrosssub- disciplines. Ihavehadnumerousconversationswithfaculty,bothinsideandoutsidemy committee membership, that have shaped the direction of my research and professional growth. Finally, this project has been a long and grueling journey that I would not have had the strength to endure without the emotional support of my friends and family near and far. The Wesley United Methodist Church and Foundation have become my family and have made Champaign-Urbana a place that will always feel like a home to me. Since nothing compares to the support a peer can provide, I must also thank Luke Bard, Jeff Curtis, Bobby Jackson, Jason Keeler, Catrin Mills, Sara Strey for walking this path with me. vi Table of Contents Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 TheImportanceofRadiationinaCloudyAtmosphere . . . . . . . . . . . . . 1 1.2 CommonlyUsedRepresentationsofRadiation: 1D . . . . . . . . . . . . . . 3 1.3 Problemswith1DRepresentations . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 EvaluatingtheNeedsoftheRadiativeTransferCommunity . . . . . . . . . 11 1.5 What’sBeenDone? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 TheRoleofthisProject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter2 RadiativeTransferBackground . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 BasicRadiativeQuantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 RadiativePropertiesoftheAtmosphere . . . . . . . . . . . . . . . . . . . . . 18 2.3 1DRadiativeTransferEquation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 3DRadiativeTransfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 MonteCarloMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 SpectralIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 OperationalApproaches . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2 AdvancedResearchApproaches . . . . . . . . . . . . . . . . . . . . . 32 Chapter3 MonochromaticModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 The“IMC-original”Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 CodeBaseStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 CalculationofRadiativeQuantities . . . . . . . . . . . . . . . . . . . 38 3.1.3 AlgorithmHighlights . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 The“IMC+emission”Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 PhysicalBasisforInternalEmission . . . . . . . . . . . . . . . . . . . 42 3.2.2 ComputationalImplementationHighlights . . . . . . . . . . . . . . . 49 3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.3 FluxDivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Chapter4 BroadbandIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1 PhysicalandComputationalBasisfor“MCBRaT-3D”Algorithm . . . . . . . 89 4.1.1 ComputingtotalincidentoremittedFlux . . . . . . . . . . . . . . . . 90 4.1.2 AssigningPhotonFrequency . . . . . . . . . . . . . . . . . . . . . . . 91 vii 4.1.3 ComputationalImplementationHighlights . . . . . . . . . . . . . . . 94 4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.1 DistributionofPhotonsSpectrallyandSpatially . . . . . . . . . . . . 95 4.2.2 MagnitudeofIncomingorEmittedBroadbandIrradiance . . . . . . 96 4.2.3 RadiativeQuantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter5 Applicationofthe“MCBRaT-3D”ModeltotheRealAtmosphere . . . 105 5.1 Inputstothe“MCBRaT-3D”Model . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.1 PhysicalDomainFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.2 OpticalPropertyDatabases . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.3 SolarSourceFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.1.4 Namelist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2 OnlineConstructionofDomainsfromInputs . . . . . . . . . . . . . . . . . . 109 5.2.1 RayleighScatteringComponents . . . . . . . . . . . . . . . . . . . . . 109 5.2.2 GaseousAbsorptionComponents . . . . . . . . . . . . . . . . . . . . 111 5.2.3 ParticleAbsorptionandScatteringComponents . . . . . . . . . . . . 112 5.3 ComputationalHighlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4 GaseousAbsorptionDatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.5 WaterDropletAbsorptionandScatteringDatabase . . . . . . . . . . . . . . 122 5.6 Testingthe“MCBRaT-3D”ModelwithaRealisticCase . . . . . . . . . . . . 126 5.6.1 SettingUpCIRCCase7 . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.6.2 CIRCCase7Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.7 “MCBRaT-3D”ModelLimitations . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.1 AdditionalBenchmarkResults . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.1 ImportanceofSpatialResolutiontoBroadbandHeatingRates . . . . 142 6.1.2 PlaneParallel/ICAvs3DBroadbandHeatingRates . . . . . . . . . . 143 6.2 ComputationalChallengesandBestPractices . . . . . . . . . . . . . . . . . . 147 6.2.1 DealingwithDataSize . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.2 EfficientSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 viii Chapter 1 Introduction 1.1 The Importance of Radiation in a Cloudy Atmosphere Radiationistheultimatesourceofenergythatdrivesatmosphericcirculationsatavariety of spatial and temporal scales. It is the uneven distribution of absorbed radiation on our spherical planet between the poles and the equator (figure 1.1) that kicks off the Hadley Circulation, the most basic model for large scale circulation in earth’s atmosphere. The average solar flux received at the equator is much larger than that received at the poles becauseofthedifferenceinorientationoftheearth’ssurfaceatthoselocationsrelativeto thedirectionofincomingsunlight. Thedeficitbetweenabsorbedandemittedradiationat thepolesandthesurplusneartheequatormeansthatheatmustbetransportedpoleward by other means, such as atmospheric and oceanic circulations, to avoid ever increasing coolingatthepolesandwarmingattheequator. Turningtoweatherforanotherexample, the difference in net radiation absorbed by water and land, due to the differences in ab- sorptivity and emissivity of the materials, sets off sea and lake breezes that keep coastal areascoolduringwarmdays. Theverticaldistributionofabsorbedradiationintheatmosphereandatthesurfaceis controlled largely by the distribution of clouds, since they have such a strong impact on the absorbed solar and emitted thermal radiation, are so temporally and spatially vari- able,andyetaresoplentifulintheatmosphere. Figure1.2showstheglobalannualmean energy balance of the earth. Almost a quarter of incoming solar radiation is redirected back to space by atmospheric components, largely clouds. Clouds also act to reduce 1

Description:
2016 by Alexandra L. Jones. All rights University of Illinois at Urbana-Champaign, 2016 Without that guidance my dissertation research would.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.