ebook img

Development of Air-to-Air Heat Pump Simulation Program PDF

260 Pages·2007·1.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of Air-to-Air Heat Pump Simulation Program

DEVELOPMENT OF AIR-TO-AIR HEAT PUMP SIMULATION PROGRAM WITH ADVANCED HEAT EXCHANGER CIRCUITRY ALGORITHM by IP SENG IU Bachelor of Science/Electromechanical Engineering The University of Macau Taipa, Macau SAR 1999 Master of Science/Mechanical Engineering Oklahoma State University Stillwater, OK 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May 2007 UMI Number: 3259575 UMI Microform3259575 Copyright2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 DEVELOPMENT OF AIR-TO-AIR HEAT PUMP SIMULATION PROGRAM WITH ADVANCED HEAT EXCHANGER CIRCUITRY ALGORITHM Dissertation Approved: Daniel E. Fisher Dissertation Advisor Jeffrey D. Spitler Afshin J. Ghajar J. Robert Whiteley A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS There are many people I would like to thank for their supports for this accomplishment. Without any one of them I am not sure if I am able to come to this point to write the acknowledgments. My family members are supportive all the way. My parents raised all of us during the tough time but I did not realize that when I was kid. I had a really good time in the childhood. Thank you all. This dissertation is dedicated to my late father, Son Iu. I always like to be around with him and hope that he can feel the joy with me in another world. My wife, Kahori and her family are also very supportive. Mr. and Mrs. Matsunaga always treat me like their son. I still thought I could marry with Kahori when I was a student is a generous gift from them. Kahori is the real director of this dissertation. I would have just gone to another direction if without her support. When I was still a student in the University of Macau, Dr. Tam always talked about all the funs he had at OSU. I was intrigued by him and decided to come here some day. I had a rough start at OSU but Dr. Ghajar was willing to help me through. I always think that I owe him this one. My academic advisor, Dr. Fisher, has guided me through my Master and Doctoral studies. He has made me realize how important and useful FORTRAN is. The computer language that I used to despise. I guess right now I cannot live without it anymore. It is a iii roller coaster ride with him in the last seven years. It is a great learning experience though. I have learned a lot from him. He also reminds me the joy of being in a big family. Dr. Spitler is the first professor that I was referred to by Dr. Tam. I am glad he is in my committee. He is a very knowledgeable professor. I should have realized his academic greatness earlier. OSU is very fortunate to have him around. I really appreciate my outside committee member, Dr. Whiteley for reading all of my writings. I had no clue what kind of professor he is when I asked him to join my committee. Thank you Dr. Fisher for the recommendation. Dr. Whiteley is an outside committee member like no others. I am glad I can have him in my committee. Dr. Bansal and Dr. Rees are two former visiting professors at OSU. They provided great help at the beginning of this research. If without their help, I would not know what I would be writing for this research. Ben Alexander is a very skillful technician. He helped me in several different projects and set up the pseudo psychometric room. He seemed enjoyed working at OSU but I believe he deserves something better than that. If I am looking for someone to help in the future, he will be the first on my list. I also like to thank the people at York, now Johnson Controls, Inc. for their technical support. Charles Obosu started this project and helped me set up all the experiment in the lab. Nathan Weber always provided me valuable inputs to improve the simulation program. He has been fun to work with since we worked together at OSU. John Knight took over the project later and he has brought the simulation program to another level. I have learned a lot from him in the practical perspective. He has also iv helped me find all the resources that I need to finish this work. Steven Jones helped me run all the experiment patiently. He was even willing to squeeze his work schedule to get the data for me. I really appreciate his help. I guess I cannot say enough thank you to all of them but than you all! v TABLE OF CONTENTS Acknowledgments.............................................................................................................iii List of Tables...................................................................................................................viii List of Figures....................................................................................................................ix Nomenclature...................................................................................................................xii 1. Introduction....................................................................................................................1 1.1. Background..............................................................................................................1 1.2. Objectives.................................................................................................................3 1.3. Unique Contributions...............................................................................................5 1.4. Overview..................................................................................................................6 2. Review of Literature......................................................................................................8 2.1. Component Models..................................................................................................8 2.2. System Simulation Algorithms..............................................................................18 2.3. Refrigerant Properties............................................................................................25 2.4. Refrigerant Oil Mixture..........................................................................................27 2.5. Circuiting Algorithms............................................................................................27 2.6. Local Air Side Heat Transfer Coefficients.............................................................33 3. Mathematical Models..................................................................................................37 3.1. Compressor............................................................................................................37 3.2. Expansion Device...................................................................................................39 3.3. Distributor..............................................................................................................42 3.4. Heat Exchangers.....................................................................................................44 3.5. System Charge.......................................................................................................75 3.6. Interconnecting Pipes.............................................................................................76 3.7. Filter Drier..............................................................................................................76 3.8. Accumulator...........................................................................................................77 3.9. Refrigerant Properties............................................................................................81 3.10. Refrigerant-Oil Mixture.......................................................................................82 3.11. System Simulation Algorithms............................................................................84 4. Model Evaluation.........................................................................................................89 4.1. Compressor............................................................................................................89 4.2. Short Tube Orifice..................................................................................................91 4.3. Condenser...............................................................................................................94 4.4. Evaporator..............................................................................................................97 4.5. Circuiting................................................................................................................99 4.6. System Simulation...............................................................................................104 4.7. System Simulation with Row-by-Row Heat Transfer Coefficient......................108 5. Development of Row-by-Row Heat Transfer Coefficient......................................110 5.1. Experimental Method...........................................................................................110 5.2. Test Conditions....................................................................................................114 vi 5.3. Derivation of the Heat Transfer Coefficient........................................................115 5.4. Uncertainty Analysis............................................................................................118 5.5. Verification of Experimental Method..................................................................124 5.6. Louvered Fin Heat Transfer Coefficients............................................................131 5.7. Correlation Development.....................................................................................137 5.8. Evaluation of Row-by-Row Louvered Fin Heat Transfer Coefficients for System Simulation ..................................................................................................................146 6. Model Validations......................................................................................................150 6.1. Experiment for Model Validations.......................................................................150 6.2. Test Conditions....................................................................................................153 6.3. Component Level Validation...............................................................................154 6.4. System Level Validation......................................................................................167 6.5. Validation with Additional Data..........................................................................174 7. Summary and Recommendations.............................................................................189 7.1. Summary of Results.............................................................................................189 7.2. Recommendations for Future Work.....................................................................192 8. Reference....................................................................................................................195 9. Bibliography...............................................................................................................207 9.1. Air Side Heat Transfer and Pressure Drop...........................................................207 9.2. Airflow Maldistribution.......................................................................................208 9.3. Charge..................................................................................................................209 9.4. Compressor..........................................................................................................210 9.5. Dehumidification..................................................................................................210 9.6. Expansion Device.................................................................................................212 9.7. Heat Exchangers...................................................................................................212 9.8. Heat Pump Models...............................................................................................213 9.9. Miscellaneous.......................................................................................................214 9.10. Refrigerant Side Heat Transfer and Pressure Drop............................................215 10. Appendix...................................................................................................................218 10.1. Verification of Flat Fin Heat Transfer Coefficients...........................................218 10.2. Louvered Fin Normalized Row-By-Row j-factors............................................221 10.3. Louvered Fin Scaled Row-By-Row Nusselt Number........................................223 10.4. Nusselt Number Correlations.............................................................................226 10.5. York Data Boundary Conditions........................................................................227 vii LIST OF TABLES Table 2.1 Connection arrays for the sample circuit of Ellison et al. (1981)......................29 Table 2.2 Adjacency matrix for the sample circuit of Ellison et al. (1981)......................31 Table 2.3 Junction-tube connectivity matrix for the sample circuit..................................33 Table 3.1 Empirical coefficients for the short tube model Payne and O'Neal (2004).......41 Table 3.2 Circuit table for the sample circuit....................................................................66 Table 3.3 Junction numbering for the sample circuit in Figure 3.6...................................70 Table 3.4 Flow rate per ton for different refrigerants (ARI 2004).....................................77 Table 4.1 Test coil geometry.............................................................................................94 Table 4.2 Test coil geometry for circuiting algorithm evaluations..................................101 Table 4.3 Sample system for the evaluations of system simulation................................105 Table 5.1 Measuring instruments and uncertainties for the coil tests..............................112 Table 5.2 Coil test matrix.................................................................................................115 Table 5.3 Circuit pressure drop at 0.91 m3.hr-1 water flow rate.......................................121 Table 5.4 Empirical coefficients for the Nusselt number correlation, Equation (5.48)...140 Table 5.5 Empirical coefficients for the Nusselt number conversion, Equation (5.51)...145 Table 5.6 Coil specifications for the evaluation of row-by-row louvered fin coefficients. ..........................................................................................................................................146 Table 6.1 Coil geometry..................................................................................................152 Table 6.2 Instruments and uncertainties for the system tests...........................................152 Table 6.3 Matrix for model validation (52% indoor relative humidity, 50 m3.min-1 outdoor flow rate)............................................................................................................154 Table 6.4 Coefficients for the Copeland compressor ZR34K3-PFV...............................157 Table 6.5 Refrigerant side boundary conditions for system level validation..................169 Table 6.6 York data system configuration.......................................................................175 Table 6.7 York data boundary conditions........................................................................178 Table 6.8 Test conditions for the York systems..............................................................178 Table 6.9 Short tube model validation with the York data System 30............................183 Table 10.1 Boundary conditions for compressor model validation.................................227 Table 10.2 Boundary conditions for short tube model validation...................................230 Table 10.3 Refrigerant side boundary conditions for condenser model validation.........230 Table 10.4 Refrigerant side boundary conditions for evaporator model validation........233 Table 10.5 Refrigerant side boundary conditions for system level validation................235 viii LIST OF FIGURES Figure 2.1 Discretization of heat exchanger tubes.............................................................12 Figure 2.2 Zone-by-zone method: Equivalent circuit assumption.....................................13 Figure 2.3 Successive substitution: System simulation algorithm.....................................20 Figure 2.4 Successive substitution: System design calculation.........................................23 Figure 2.5 Sample circuit (Ellison et al. 1981)..................................................................29 Figure 2.6 Equivalent electrical circuit for the sample heat exchanger circuit..................32 Figure 2.7 Row-by-row j-factor (Rich 1975).....................................................................34 Figure 3.1 Heat exchanger segment-by-segment discretization........................................46 Figure 3.2 Heat exchanger element...................................................................................46 Figure 3.3 Side view of heat exchanger showing staggered tube pattern..........................49 Figure 3.4 Sample circuit with re-assigned tube numbers.................................................65 Figure 3.5 Joining and splitting circuits.............................................................................66 Figure 3.6 Illustrative example for the nodal admittance formulation method.................70 Figure 3.7 Algorithm for heat exchanger model................................................................75 Figure 3.8 Geometry definitions for the accumulator model.............................................78 Figure 3.9 Simulation algorithm for Orifice and TXV Design..........................................85 Figure 3.10 Simulation algorithm for fixed orifice simulation..........................................87 Figure 3.11 Simulation algorithm for TXV simulation.....................................................88 Figure 4.1 Compressor evaluation: Mass flow Rate (Tested at 11.1 K superheat)...........91 Figure 4.2 Compressor evaluation: Power consumption (Tested at 11.1 K superheat).....91 Figure 4.3 Orifice model evaluation: Change of inlet saturation temperature..................92 Figure 4.4 Orifice model evaluation: Change of orifice diameter.....................................93 Figure 4.5 Test Coil for heat exchanger model evaluations..............................................94 Figure 4.6 Condenser model evaluation: Capacity............................................................95 Figure 4.7 Pressure-Enthalpy diagram for different refrigerants.......................................96 Figure 4.8 Condenser model evaluation: Mass inventory.................................................97 Figure 4.9 Evaporator model evaluation: Capacity...........................................................98 Figure 4.10 Evaporator model evaluation: Mass Inventory...............................................99 Figure 4.11 Sample circuits for circuiting model evaluations.........................................100 Figure 4.12 Circuiting model evaluation: Capacity.........................................................101 Figure 4.13 Circuiting model evaluation: Pressure drop.................................................102 Figure 4.14 Circuiting model evaluation: Refrigerant distribution (mass flow rate = 0.032 kg.s-1)................................................................................................................................103 Figure 4.15 Coil circuitry for the sample system.............................................................105 Figure 4.16 Evaluation of system simulation: Capacity..................................................107 Figure 4.17 Catalog data for the York heat pump BHH048............................................108 Figure 4.18 Comparison of row-by-row and overall flat fin heat transfer coefficients...109 Figure 5.1 Test rig for coil performance measurement....................................................110 Figure 5.2 Coil instrumentation.......................................................................................113 ix

Description:
Chapter 3 presents the mathematical models that are selected for this investigation from the published Chapter 5 presents the development of the row-by-row heat transfer coefficients for louvered .. the load dynamics, steady-state system simulation is appropriate for heat pump design and simulatio
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.