DEVELOPMENT OF A LOW-DENSITY JET FLOW APPARATUS by NICHOLAS EDWARD SMITH A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Mechanical Engineering in the Graduate School of The University of Alabama TUSCALOOSA, AL 2010 Copyright Nicholas Edward Smith 2010 ALL RIGHTS RESERVED ABSTRACT An apparatus was designed and constructed to study supersonic fluid flow in a low temperature and low pressure environment similar to the same conditions associated with near space. The apparatus allows the visualization of supersonic flows through an annular nozzle using a shadowgraph system. The flow system that creates supersonic flows is capable of producing pulsating jets at virtually any frequency. This thesis includes details of design of a near space jet flow apparatus that is capable of producing low temperature and low pressure environment for studying annular jets. The annular jets are produced from a nozzle that may be later incorporated on near space vehicle. After testing, it was discovered that the apparatus was capable of producing low temperatures and low pressures, but the results were inconsistent with a near space environment. The nozzle being studied has a blocking ratio of 0, 0.5 and 0.75. For each blocking ratio, the flow is choked, producing a constant mass flow rate. The theoretical and actual thrust were calculated using propulsion equations. The experimental results were compared to the theoretical, isentropic results. The jet length was also measured as a reference for vehicle design limitations. It was found that the maximum experimental thrust coefficients for a nozzle with blocking ratios of zero, 0.5 and 0.75 were calculated to be 0.430, 0.439, and 0.537 respectively. All maximum thrust coefficients occur at an ambient pressure of 0.5 kPa. ii LIST OF ABBREVIATIONS AND SYMBOLS Discharge coefficient for theoretical model Discharge coefficient for nozzle CV Control volume e Exiting i Entering NSJFA Near space jet flow apparatus Pressure Heat transfer Air gas constant Temperature Volume Work Mass Mass flow rate Specific internal energy Mach number Velocity or specific volume Speed of sound Specific heat ratio Force (thrust) iii Uncertainty Time Change iv ACKNOWLEDGEMENTS First and foremost I would like to thank God, my family, and Catherine for supporting me and providing me the opportunity to continue my education. I would like to thank Dr. John Baker for allowing me to work in the Aerothermal Sciences Laboratory and continue my graduate studies in the Department of Mechanical Engineering at the University of Alabama. Without his guidance, I would not have been able to achieve my dream of receiving a master‟s degree in mechanical engineering. I would also like to thank my committee members Dr. Bob Taylor and Dr. Paul Ray. I would also like to thank Matt Fitzgerald and Arnar Thors from FitzThors Mechanical, Brandon Griffin, and the employees in the engineering machine shop for assisting me with my project construction. I would also like to thank Donald Smith from CNX gas for donating various parts for my project. I also want to thank Jason Cottingham for helping me with my project construction and Brian Lozes for helping me develop a Matlab code. v CONTENTS ABSTRACT .................................................................................................................................... ii LIST OF ABBREVIATIONS AND SYMBOLS .......................................................................... iii ACKNOWLEDGEMENTS ............................................................................................................v LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES .................................................................................................................... .vii 1. INTRODUCTION .....................................................................................................................1 1.1. NEAR SPACE ....................................................................................................................1 1.2. STATION-KEEPING .........................................................................................................3 1.3. MOTIVATION ...................................................................................................................3 1.4. OUTLINE OF THESIS ......................................................................................................4 2. REVIEW OF LITERATURE ....................................................................................................5 2.1. NEAR SPACE ....................................................................................................................5 2.2. NOZZLES & JET FLOWS ................................................................................................6 3. BACKGROUND .....................................................................................................................10 3.1. JET FLOWS .....................................................................................................................10 3.1.1. CHOKED FLOW...................................................................................................10 3.1.2. MACH NUMBER & FLOW CORRELATIONS..................................................11 3.1.3. NORMAL & OBLIQUE SHOCKS .......................................................................13 3.1.4. THEORETICAL PROPULSION CAPABILITIES ..............................................14 3.1.5. IDEAL NOZZLE FLOW .......................................................................................14 4. THEORETICAL DISCHARGE MODEL ...............................................................................15 4.1. FORMULATION .............................................................................................................15 4.2. IDEAL GAS LAW ...........................................................................................................15 4.3. FIRST LAW OF THERMODYNAMICS: TRANSIENT ................................................16 4.4. THERMODYNAMIC MODEL .......................................................................................16 5. EXPERIMENTAL SETUP ......................................................................................................22 5.1. OVERVIEW .....................................................................................................................22 5.2. THE VACUUM CHAMBER ...........................................................................................22 5.3. THE OBSERVATION CHAMBER.................................................................................23 5.4. VALVE & ACTUATOR ..................................................................................................25 5.5. DATA ACQUISITION SYSTEM ....................................................................................28 5.5.1. MEASUREMENT DEVICES & HARDWARE ...................................................29 5.5.2. DAQ SOFTWARE ................................................................................................33 5.5.3. ADDING A CHANNEL ........................................................................................35 5.6. SHADOWGRAPH SYSTEM ..........................................................................................44 5.7. JET CONFIGURATION ..................................................................................................48 5.7.1. JET HARDWARE .................................................................................................48 5.7.2. JET INSTALLATION ..........................................................................................49 5.7.3. JET FLOW SYSTEM ............................................................................................51 5.7.4. BASIC STAMP FLOW CONTROLLER ..............................................................51 5.8. UNCERTAINTY ANALYSIS .........................................................................................54 5.8.1. MEASUREMENT UNCERTAINTY BACKGROUND ......................................55 5.8.2. LIST OF MEASUREMENT UNCERTAINTY ....................................................55 5.9. THEORETICAL M-FILE ................................................................................................56 6. RESULTS AND DISCUSSION ..............................................................................................58 6.1. THEORETICAL DISCHARGE MODEL ........................................................................58 6.1.1. CASE MATRIX.....................................................................................................58 6.1.2. RESULTS ..............................................................................................................59 6.1.3. DISCUSSION ........................................................................................................61 6.2. EXPERIMENTAL DISCHARGE MODEL.....................................................................61 6.2.1. CASE MATRIX.....................................................................................................62 6.2.2. RESULTS AND DISCUSSION ............................................................................62 7. JET TESTING .........................................................................................................................64 7.1. TESTING METHOD ........................................................................................................64 7.2. RESULTS .........................................................................................................................66 7.2.1. RESULTING EXPERIMENTAL UNCERTAINTY ............................................69 7.3. DISCUSSION ...................................................................................................................71 8. CONCLUSION ........................................................................................................................74 8.1. SUMMARY OF WORK ..................................................................................................74 8.2. FUTURE RESEARCH .....................................................................................................76 9. REFERENCES ........................................................................................................................77 10. APPENDICES .........................................................................................................................80 LIST OF TABLES Table 1. Coefficients used in calculating equations 21 and 22 ..................................................... 18 Table 2. List of observation chamber components from Duniway Stockroom ............................ 25 Table 3. List of measurement uncertainty..................................................................................... 55 Table 4. Case matrix for theoretical discharge model .................................................................. 59 Table 5. Sample case for various vacuum chamber pressure settings with observation chamber kept at atmosphere ........................................................................................................................ 60 vi
Description: