Table Of Contentcontraction nshoaitpaeu mtceam yoolrly a gcnointtareo elhadSMu crAtuta otaimlpseriwf AuMzzyS logci c ontityrcirtceolel ler ealslnooysptnsreoelaocrnc t gioantnioairflow control cgonvection coolint rsaumrfsa cselareisreeatrach me drcraft wininaerg phingryoexmp estrinmebrial emeetdost hma bagnheati nsdeA wMirSwi ddbeeddtmh actuator entroolc snccoiuteinrtutcaeser i sa vmatrsnn respoeotrafcnitococ tsse fannvecotion resporfucatortecdaa irnflooliego tiw cm onct rdoelldedraembplimteu edheraction ttainng alloy croaeetteurmp emt stpehemrrugaatiteerwial aaircrf t algorithm PID emArD JoluMIoPerS cypo vheirgnpea rhefesssu npzrzoyel llooginc cotratruoottlrcenl aP ornaIDdcb wihtdploor aerranrceeelty m ealticertiaric
btaienaohgris ctipcin uonatsogee lociniohgt nctarnt embeddedebemhaviplacseiodu ren lasor inistrutmentapatildovaber lt acnedolbe einefl rgyex rouator memtycemvelo anbe dldaecidn thec raocttaivuet eclmtiaaofl rpepnsphain g fatigue data as yirnwz z eaufl yhstids laib s w uperednlaasb t ram s c eiffe tcyity shape memor ursf eaclceyaectse recrhcorhn e orrlogy reontrollc resens slrooptnor corotnass acetrueu tmce struvatierial adatporl tnwoirce slofurztznyo lco cgiollmart ays cst wriaireemnce secdreo f waforiecflrqurenocfy rehstpdiwdonanb se test cosnvecsertitso ne cariwlc uslaitiosns anayldata logic respoensive material wir controller conDvection research IPme tganlliihcptrariloling m eegdevuoisnroa vpirsieatiovna enheergb ye cnampreorf
ould adaptivemb eanrduwmt icdathafnuitvceag hcenoelitnautoroJl acttuaor eebhdd asw evdrrifloieiourawb emem ebteadlppxe tleeasr tmg itheenatintrnolocr eepseaach arsph pli ed actuatorftas scontreactioirnw ayllzozyu ffa Ast reMsponse Scriraa fgt nviaomihhautepemrri ablroopng ressniitvaeeolity Jeuelce cthir wiresyrotPaDIr smat roencei csiabslobtuaric se py raoigri mnshoietethmaer maal shpe ntler colorolrtmnantespoesore iacl rol fiPrIiaD malgaoeritbh emta lpgrn heatiePDIlontrclo ariwflo
IDPmethod fuzz functionweywti gir heme it wniroeistrcesaprtonnosc eotit actuarnace spaomhntrols contraction cso iAw nr M eStr roul oairiflovw fhoarecb e l aire tamd d cehannel embeddhaevbio eudrufretqilupenmac yevisponser er rs daistayoral naollmemory ay eressha p p oDnsIeP lmaiarteehaviour wirebsw ires airfgoilnrehi pmorlspaonse mateir ahptiveegdancotiong forced lia ptaion shaeufiion taavzczilpaft apy rrespconse airnitgaepchoson esodrlien n lwgiai rbeetaviour amh econtrocller fsratursu cetudruet iacltuaptor ame surfacegntahcoientraction atr evsponsieshre fags atnpe cahodol methrbatnlogic cofnd uwz zidythanmyidcsorreesae asrccihn aoivart airfoilnesmiwtubing blade rs energy viouradhata acquisition be v AuialLwMir rc o Seaned traeollpvit
Adrián Lara Quintanilla
DEVELOPMENT OF A FAST SHAPE MEMORY ALLOY
BASED ACTUATOR FOR MORPHING AIRFOILS
DEVELOPMENT OF A FAST SHAPE MEMORY ALLOY
BASED ACTUATOR FOR MORPHING AIRFOILS
Proefschrift
terverkrijgingvandegraadvandoctor
aandeTechnischeUniversiteitDelft,
opgezagvandeRectorMagnificusprof.ir.K.C.A.M.Luyben,
voorzittervanhetCollegevoorPromoties,
inhetopenbaarteverdedigenop
donderdag24maart2016om10:00uur
door
Adrián LARA QUINTANILLA
IngenieroIndustrial,
UniversidadCarlosIIIdeMadrid,Spain,
geborenteBurgos,Spain.
Ditproefschriftisgoedgekeurddoorde
promotor:Prof.dr.ir.R.Benedictus
copromotor:dr.ir.H.E.N.Bersee
Samenstellingpromotiecommissie:
RectorMagnificus, voorzitter
Prof.dr.ir.R.Benedictus Promotor
Dr.ir.H.E.N.Bersee Copromotor
Onafhankelijkeleden:
Prof.Dr.Ir.G.A.M.vanKuik, DelftUniversityofTechnology
Prof.Dr.Ir.A.deBoer, UniversityofTwente
Prof.Dr.D.Polyzos, UniversityofPatras
Prof.Dr.J.A.PuértolasRafales, UniversidaddeZaragoza
Prof.Dr.G.vanBussel, DelftUniversityofTechnology(reservelid)
Overigeleden:
Dr.Ir.J.W.vanWindergen, DelftUniversityofTechnology
Thisresearchwascarriedoutaspartofthe"SmartFixedWingAircraft"Europeanproject
undertheCleanSkyJointTechnologyInitiativeprogram.
Keywords: Shapememoryalloy,actuator,actuationfrequency,control,morphing
airfoils
Printedby: BOXPress
Coverdesign: AdriánLara-Quintanilla
Cartoon: StephanTimmers
Copyright©2016byAdriánLara-Quintanilla
Allrightsreserved.Nopartofthematerialprotectedbythiscopyrightnoticemaybe
reproducedorutilisedinanyformorbyanymeans,electronicormechanical,including
photocopying,recordingorbyanyinformationstorageretrievalsystem,withoutprior
permissionoftheauthor.
ISBN978-94-6186-612-7
Anelectronicversionofthisdissertationisavailableat
http://repository.tudelft.nl/.
Amispadresymihermana,aquienesselodebotodo
S
UMMARY
Thedesignofaerodynamicairfoilsareoptimizedforcertainconditions. Forinstance,
theshapeofthewingsoffixed-wingaircraftsaredesignedandoptimizedforacertain
flightcondition(intermsofaltitude,speed,aircraftweight,etc.). However,theseflight
conditionsvarysignificantlyduringtheflight.Currently,aircraftareprovidedwithcon-
trolsurfacessuchasflaps,slatandailerons,normallygovernedbypowerfulbutheavy
hydraulicmechanisms. Thesemovingpartsallowtheaircrafttoflyundermanydiffer-
entflightconditions,althoughusuallywithnon-optimalperformance. Moreover,these
mechanisms introduce hinges and surface discontinuities between parts which cause
undesirableeffectssuchasturbulencesandnoiseoradecreaseofthelift-to-dragratio.
Thisissuemotivatestheresearchanddevelopmentoftheso-called‘morphingaircraft’
or‘morphingwings’. Ideally,amorphingaircraftisabletomodifyquicklytheshapeof
itswingsin-flight,thusreachingoptimumaerodynamicperformanceunderanyflight
condition.Thisideaisapplicabletoanyotheraerospaceapplicationssuchasrotorcraft
orwindturbines.
Morphingappliedtoaerodynamicairfoilsbringsalonginterestingbenefits: reduc-
tionofmechanicalfatiguewhichhasaspecialimportanceinwindturbinesandrotor-
crafts(byminimizingvibrationsonthestructure), reductionofthewingrootbending
moment,reductionoffuelconsumptionofflyingmachinesandincreaseoftheperfor-
manceofwindturbinesbyincreasingthelift-to-dragratioofthewingsorblades,and
thereductionofgeneratednoise.
Thisdissertationgivesanintroductionontheconceptofmorphingappliedtoaero-
dynamicairfoilsanddescribesthebenefitsandchallengesbroughtbymorphingstruc-
tures.Subsequently,thepotentialofsmartmaterialstodevelopnovelactuationsystems
isintroduced. Thedescriptionofthemotivationforthisworkleadstothepurposeof
thisresearch,whichaimsatdevelopingaprototypeofageneral-purposemorphing
flat surface based on embedded shape memory alloy wires with increased working
frequencyformorphingairfoils. Inordertoachievethispurpose, theresearchisdi-
videdintotworesearchobjectives.Thefirstresearchobjectiveistodevelopaprofound
understandingofthebehaviourofshapememoryalloys(SMAs)and,subsequently,to
deviseamethodtoincreasetheiractuationfrequency.Thesecondresearchobjective
istodevelopnovelcontrolalgorithmsandactuatortechnologyaswellasanintegra-
tiontechnologyfortheSMAwireswithincreasedactuationfrequency.
Followingtheintroduction,thisthesisdescribesthepotentialofsmartmaterialsin
general,andSMAsinparticular,todevelopnovelsmartactuatorsformorphingwings.
Themaindifferencesbetweenconventionalandsmartactuatorsareexplainedtogether
withtheiradvantagesandintroducedchallengesintermsofdesignandcontrol.These-
lectionofSMAsisjustifiedasthebestcandidatestoachievetheresearchobjectives. A
detaileddescription,workingprinciples,features,capabilities,limitationsandapplica-
tionsofSMAbasedactuatorsisgivenaswell.
vii
viii SUMMARY
Inordertofulfillthefirstresearchobjective,aseriesoflogicalstepswerefollowed.
OncetherequirementsoftheSMAbasedactuatorwerestated,acommercialSMAwire
waschosenandcharacterized(i.e., thephasediagramoftheSMAwirewasobtained)
whichshowsthephasecompositionoftheSMAwhenitissubjectedtodifferentlevels
ofstressandtemperature. Thephasediagramwasobtainedfromdatacollectedfrom
isothermal, isobaricanddifferentialscanningcalorimetertests. Duringanisothermal
test,thetemperatureiskeptconstantandtheSMAwireissubjectedtoincreasingand
decreasinglevelsofstressinordertofindthosestressesatwhichtheSMA’sphasetrans-
forms.Similarly,anisobarictestkeepsthestressontheSMAconstantovertimeandthe
temperatureisincreasedanddecreasedtofindthoseatwhichtheSMA’sphasetrans-
forms. Subsequently,thefunctionalfatigueoftheSMAwirewasstudiedbytrainingthe
SMAwire. Thistrainingprocessconsistinapplyingrepetitiveheatingandcoolingcy-
clesinanisobaricconfiguration. Highrepeatabilitywasfoundontheresults. Afteran
averageof7289trainingcycles,thewirewasabletorecoveronly77%ofitsoriginalre-
coverablelengthforthetestedconditionsofappliedcurrent,heatingtime,coolingtime
andappliedstress.
Subsequently,anSMAmodelforSMAwiresisimplementedinafiniteelementanal-
ysis software. The equations that describe the model and their physical meaning are
explained. Oneoftheadvantagesofthechosenmodelistheeaseofobtainingthepa-
rametersrequiredbythemodel,whichcanbeobtainedfromafewexperiments. Inad-
dition,andalsoasapartofthemodel’srequiredparameters,thecharacteristicsofthe
forcedcoolingsystemarestudiedhere,andtheheattransfercoefficientofsuchairflow
fordifferentairflowratesismeasured.Finally,themodelissatisfactorilyvalidated.
OneofthelimitationsofSMAbasedactuatorsistheirpooractuationfrequency(usu-
allylowerthan0.1Hz).Thisisduetothefactthattheyarethermallyactivated,normally
byJouleheating,whichisaquickprocess.However,theymustbecooledbeforethenext
actuationcycle, whichnormallyhappensbynaturalconvection. Thiscoolingprocess
canbeacceleratedbymeansofactivecoolingsystems. Inthisresearch,anactivecool-
ingairflowatroomtemperatureisused. Theeffectsofapplyingdifferentheatingand
coolingratesonthetimethatittakesforthewiretocontractandelongate(respectively)
wereexperimentallymeasuredusinganisobaricconfiguration. Inaddition, thesame
experimentsweresimulatedbythemodelforSMAwiresimplementedpreviously.There
isanoverallquantitativedisagreementbetweentheresultsyieldedbythesimulations
andbytheexperiments. However, theresultsareusefulqualitatively. Itisfoundthat
thecontractingandthecoolingtimesaresignificantlydecreasedastheappliedpower
andairflowisincreased. Moreimportantly,itisfoundthatwhenthewireworksatlow
workingfrequencies, theheatingrateisthelimitingfactorwhereasthecoolingrateis
thelimitingfactorwhenitworksathighworkingfrequencies. Inaddition,theseexper-
imentsshowthatincreasingthelevelofappliedstressresultsinslightlyhigherworking
frequenciesoftheSMAwire.
Theknowledgeacquiredinthepreviousexperimentsandsimulationsleadstothe
development of a method to improve the attainable actuation frequency of the SMA
wires.Thismethodisbasedontheideathat,inmanySMAbasedapplications,theSMA
wiresdonotworkthroughouttheirfullrecoverablestrainbuttheyworkonlywithina
portionofit.Takingadvantageofthenonlinearityofthestrain-temperaturerelationship
SUMMARY ix
forSMAs,themethodproposedhereisabletoincreasetheSMA’sactuationfrequencyby
threeandahalftimesjustbymakingtheSMAwireworkwithinthemostsuitablerange
ofstrains,withoutvaryingtheheating,coolingandstressconditions. Thedevelopment
ofthismethodfulfillsthefirstresearchobjective.
Lateroninthisthesis,thedesign,manufacturingandassemblingprocessesofthe
SMAbasedactuatoraswellastheirchallengesaredetailed.First,abeam-likemoduleof
theSMAbasedactuatorwasconceived,designedandmanufactured.Subsequently,the
designwasexpandedinthespanwisedirection, thusobtainingamodularSMAbased
actuator that forms a morphing plate. The morphing plate was tested by heating the
SMA wires embedded in the actuator. This test revealed an unexpected behaviour of
theplate. Theexpectedbehaviourwasthatitwouldbendupwardswhenthewireson
thetopside wereheated. However, insteadofbendinguniformly alongthespanwise
direction,thecenteroftheplatebendedupwardsandthesidesdownwards. Asimilar
responsewasobservedwhenthewiresonthebottomsidewereheated.Thiswasfound
tobecausedbyinhomogeneousthermalexpansion(inthespanwisedirection)through
thethicknessoftheplate.
Due to the unexpected response observed on the morphing plate, a single beam-
likemoduleSMAbasedactuatorwascontrolledundertwodifferentcontrolstrategies,
fuzzylogiccontrol(FLC)andproportional-integrative-derivative(PID)control. Inboth
cases, theSMAbasedactuatorwasmadetotracksinusoidalandstepsignalsinorder
tomeasureitsperformance. TheoverallperformanceofthesystemunderFLCisbet-
terthanthatunderPID.UnderFLC,itreachesactuationfrequenciesabove0.6Hz for
workingatamplitudesofupto6mm,andfrequenciesabove1Hzforamplitudesofup
to3mmwhiletrackingthereferencesignalaccurately(maintainingrelativeerrorbelow
10%). UnderPIDcontrol,itreachesactuationfrequenciesabove0.5Hz whenworking
atamplitudesupto3mm,andfrequenciesabove0.7Hzforamplitudesupto2mm.The
actuatorisabletotrackstepsignals(thatis,toreachandmaintainaconstantdeflection
over time) under both types of controller, although under FLC it is significantly more
stable. Thesedevelopeddesign,manufacture,assemblyandcontrolmethodsfulfillthe
secondresearchobjective.
Thisthesispresentsnovelmethodsaimingtoincreasetheaccuracyandactuation
frequencyofSMAbasedactuators. Inparticular, thisworkisfocusedonthedevelop-
mentofamorphingsurfaceintendedtobeintegratedinmorphingairfoils. However,
the methods and ideas developed in this research are applicable to other SMA based
applications,especiallythosewhichrequirefast,cyclicandaccurateactuation.
Description:r w ires cooling heatingfo rced adaptive fu zzy respon se aircraft app lic a tio n aviatio n sh ape cooling behavio u. r m aterial respons e w ind heating controller structure actuator a .. rijkste verschil tussen conventionele en slimme actuatoren wordt uitgelegd samen met de voordelen en uitdagin