ebook img

Development and Implementation of Ab Initio Quantum Chemistry PDF

130 Pages·1998·0.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development and Implementation of Ab Initio Quantum Chemistry

Ab Initio Development and Implementation of Quantum Chemistry Techniques for Application to Large Molecules Thesis by Richard P. Muller in partial ful(cid:12)llment of the requirements of the Degree of Doctor of Philosophy, California Institute of Technology, Pasadena, California. Submitted May 4, 1994. (cid:13)c 1994 Richard P. Muller Second Revision (cid:13)c 1997 All Rights Reserved. April 23, 1997 Contents 1 Introduction 5 2 Overview of Ab Initio Electronic Structure Theory 10 2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 2.2 The Electronic Hamiltonianand Hartree-Fock Wave Functions : 11 2.3 Open Shell Hartree-Fock Wave Functions : : : : : : : : : : : : : 18 2.4 Interpretation of Hartree-Fock Theory Results : : : : : : : : : : : 21 2.5 Shortcomings of Hartree-Fock Theory : : : : : : : : : : : : : : : 21 2.6 Generalized Valence Bond Theory : : : : : : : : : : : : : : : : : 23 2.7 Summaryof Equations for General HF/GVB WaveFunctions : : 25 2.8 Con(cid:12)guration Interaction : : : : : : : : : : : : : : : : : : : : : : 28 2.9 Multi-Con(cid:12)gurationalSelf-Consistent Field Wave Functions : : : 29 2.10 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30 3 Pseudospectral- GeneralizedValenceBond(PS-GVB)Theory 31 3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31 3.2 The Scaling of Hartree-Fock and GVB Calculations: : : : : : : : 32 3.3 The Pseudospectral Method : : : : : : : : : : : : : : : : : : : : : 33 3.4 Naive Grid-based Calculation of Coulomband Exchange Matrices 33 3.5 Pseudospectral Coulomband Exchange Operators : : : : : : : : 36 3.6 Grids, Dealiasing Functions, and AtomicCorrections : : : : : : : 38 3.7 The Structure of the PS-GVB Program : : : : : : : : : : : : : : 39 3.8 PS-GVB Applications : : : : : : : : : : : : : : : : : : : : : : : : 41 3.8.1 Methylene : : : : : : : : : : : : : : : : : : : : : : : : : : : 42 3.8.2 Silylene : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44 3.8.3 Ethylene : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45 3.9 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46 4 PseudospectralParametersforCalculationsonNickelClusters 49 4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49 4.2 Nickel Cluster and Metal Bonding : : : : : : : : : : : : : : : : : 50 4.3 Grid Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 4.4 DealiasingFunction Parameters : : : : : : : : : : : : : : : : : : : 53 4.5 OptimizationProcedure : : : : : : : : : : : : : : : : : : : : : : : 57 2 4.6 Application to Ni4 Clusters : : : : : : : : : : : : : : : : : : : : : 59 4.7 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60 5 Direct Inversion in the Iterative Subspace Convergence for GeneralizedValence Bond Wave Functions 63 5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 5.2 Closed-Shell HF-DIIS : : : : : : : : : : : : : : : : : : : : : : : : 65 5.3 General Fock Operators : : : : : : : : : : : : : : : : : : : : : : : 67 5.3.1 Simplest Approach: CombineSeparate Fock Operators : : 68 5.3.2 The Pulay Multi-shell Fock Operator : : : : : : : : : : : : 69 5.3.3 The Page and McIver Fock Operator : : : : : : : : : : : : 69 5.3.4 The GVB-DIIS Multi-shell Fock Operator : : : : : : : : : 69 5.4 Choice of the Error Vector : : : : : : : : : : : : : : : : : : : : : : 70 5.5 Related Convergence Issues : : : : : : : : : : : : : : : : : : : : : 71 5.6 Results: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73 5.6.1 One pair GVB wave functions : : : : : : : : : : : : : : : : 73 5.6.2 Multiple GVB pair wave functions : : : : : : : : : : : : : 76 5.7 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82 6 Ab Initio Calculation of PorphyrinExcited States 83 6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83 6.2 The Four-Orbital Model and Four-Orbital Excited States : : : : 85 6.3 The Multi-Con(cid:12)gurationalNature of FOES : : : : : : : : : : : : 87 6.4 The Frozen Core Four Orbital Excited State Method : : : : : : : 89 6.5 Results of FC-FOES Porphine Calculations : : : : : : : : : : : : 90 6.6 Self-Consistent Orbital Optimizationin FOES : : : : : : : : : : : 92 6.6.1 Core-Active Mixing : : : : : : : : : : : : : : : : : : : : : 94 6.6.2 Active-Active Mixing : : : : : : : : : : : : : : : : : : : : 95 6.6.3 Occupied-Virtual Mixing : : : : : : : : : : : : : : : : : : 95 6.7 PS-GVB CalculationofMulti-Con(cid:12)gurationalOperators for SC- FOES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96 6.8 Convergence Acceleration in SC-FOES : : : : : : : : : : : : : : : 97 6.9 SC-FOES Results for Porphine : : : : : : : : : : : : : : : : : : : 97 6.9.1 Orbital Energies : : : : : : : : : : : : : : : : : : : : : : : 98 6.9.2 SC-FOES Porphine Calculations : : : : : : : : : : : : : : 99 6.10 Frozen Core Corrections to SC-FOES: SC-FOES-CI : : : : : : : 100 6.11 Reduced Porphyrins : : : : : : : : : : : : : : : : : : : : : : : : : 101 6.12 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105 A A Technique for Evaluating HamiltonianMatrix Elements 106 A.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106 A.2 The Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106 A.2.1 Break Into Individual Determinants : : : : : : : : : : : : 106 A.2.2 Transformto Spin Orbitals : : : : : : : : : : : : : : : : : 107 A.2.3 Order and Classify Determinants : : : : : : : : : : : : : : 107 A.2.4 Evaluate Matrix Elements between Operators : : : : : : : 108 3 A.2.5 TransformBack to Spatial Orbitals: : : : : : : : : : : : : 108 A.2.6 Example: One Pair GVB Energy : : : : : : : : : : : : : : 109 A.3 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109 B The Self-Consistent Optimization of Restricted Con(cid:12)guration Interaction Wave Functions: Two-Pair, Closed-Shell Special Case 111 B.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111 B.2 The GVB-RCI WaveFunction: : : : : : : : : : : : : : : : : : : : 112 B.3 RCI Spin Coupling : : : : : : : : : : : : : : : : : : : : : : : : : : 113 B.4 Determinants in the GVB-RCI Wave Function : : : : : : : : : : 114 B.5 Matrix Elements Between Determinants in the GVB-RCI Wave Function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115 B.6 The GVB-RCI Energy Expression : : : : : : : : : : : : : : : : : 117 B.7 Energy Coe(cid:14)cients and the Ya(cid:11)e-Goddard Form : : : : : : : : : 119 B.8 GVB-RCI Orbital Optimization: : : : : : : : : : : : : : : : : : : 121 B.8.1 Active-Core Mixing : : : : : : : : : : : : : : : : : : : : : 122 B.8.2 Active-Active Mixing : : : : : : : : : : : : : : : : : : : : 123 B.8.3 Occupied-Virtual Mixing : : : : : : : : : : : : : : : : : : 123 B.9 Operators Required For GVB-RCI : : : : : : : : : : : : : : : : : 124 B.10Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124 Bibliography 125 4 Chapter 1 Introduction This thesis describes new methods for extending ab initio electronic structure theory calculations to larger molecules. Ab initio methods are important for investigation of the chemicalproperties of large moleculesbecause they remain the most accurate method of computing the electronic structure of a molecule. Forthepurposesofthisthesis,thetermlargemoleculesreferstothosemolecules that require more than 200 basis functions (vide infra). Molecules of this size are di(cid:14)cult to describe with standard methods in ab initio electronic structure theory because they require large amounts of CPU time, disk storage space, and physical memory. Subsequent chapters will describe ab initio calculations in greater detail, but to summarize brie(cid:13)y, the principal expense of ab initio methods arises from the basis function techniques used to evaluate the two- electron integrals. Basis function methods, also known as spectral methods, expand the one- and two-electron integrals as a sum of integrals that can be evaluatedanalytically. Abinitiocalculationsusebasisfunctionmethodsbecause these methods provideahighdegree ofaccuracy, especially forthe one-electron terms where the fact that basis functions are analytically di(cid:11)erentiable yields highlyaccurate integration. These methodsbecomeexpensive asthe size ofthe molecule increases. In particular, evaluation of the two-electron integrals using 4 Nbf basis functions scales as (Nbf), whichbecomes prohibitivelyexpensive as O Nbf increases. Evaluationoftheone-electronintegralsusingNbf basisfunctions 2 is much less expensive, scaling only as (Nbf). 4 O The notation (Nbf) denotes that when Nbf is doubled, the computation 4 O requires 2 = 16 times as much CPU time to complete; similarly, the nota- 2 tion (Nbf) meansthat when Nbf is doubled the computationrequires 4times O as much CPU time to complete. When Nbf is large|the assumption made throughout the rest of this thesis for scaling comparisons|the higher-order scalings dominate the smaller order ones, so that a calculation that depends 4 2 4 upondi(cid:11)erent elementsscalingas (Nbf) and (Nbf)scales overallas (Nbf). O O O Clearly, one of the requirements in making ab initio electronic structure cal- culations possible on larger molecules is to determine methods that scale with 4 molecular size better than (Nbf). O 5 Numerical methods provide a less expensive alternative to integral evalu- ations. Numerical techniques evaluate one- and two-electron integrals over a grid of points in three-dimensional space. Numerical methods scale roughly as 3 (N ), where N is related to the number of grid points (vide infra). Tradi- O tionally,numerical methods have not been used for electronic structure theory because the accuracy required by electronic structure theory can be achieved usingnumericalmethodsonlywithanimpracticallylargenumberofgridpoints. The one-electron integrals are particularlydi(cid:14)culttointegrate usingnumerical methods. For electronic structure theory calculations there has traditionally been a tradeo(cid:11) between the accuracy of basis function methods and the speed of nu- merical methods. Because ab initio calculations on smallmolecules are not as computationally intensive as those on larger molecules, basis function meth- ods have predominated. As the size of the molecule|andthus Nbf|increases, 4 the (Nbf) scaling of basis function methods makesthese methods impossible. O Thus, tosolve the ab initio electronic structure oflargemoleculesnew methods must be developed. Thesolutiontothe problemofapplyingab initio electronic structure theory tolargemoleculesistouse ahybridapproach, thepseudospectral method. The pseudospectralmethodutilizesthespeedofnumericaltechniquestoevaluatethe two-electron integrals; and it utilizes the accuracy of basis function techniques to evaluate the one-electron integrals. Evaluation of the two electron integrals usingthepseudospectral methodwithNgrid gridpointsandNbf basisfunctions 2 3 scales as (NgridNbf)|approximately (Nbf). At the sametimethe accuracy O O achieved by basis function techniques for one electron integrals is preserved 4 with the pseudospectral method. The improvementin scaling from (Nbf) to 3 O (Nbf)reduces theexpense ofcalculationsonlargermolecules,andpromisesto O make ab initio electronic theory calculations possible on larger molecules that are impossiblewith pure basis function techniques. Theworkpresented inthisthesisdevelopsprogramsthatuse pseudospectral operator construction to calculate the electronic structure of real chemical sys- tems. Chapter 2 presents an overview of ab initio electronic structure theory, describing not only the manner in which basis function techniques are used to evaluatetherequisiteone-andtwo-electronoperatorsinelectronicstructurethe- ory, but also how these operators are used to obtain converged wave functions. Chapter 3 describes the formationof ab initio one- and two-electron operators using the pseudospectral method; and it outlines the procedure for using these operators to calculate the electronic structure of molecules with a wide variety of compositions, geometries, orbital occupancies, and wave functions. The or- bitaloptimizationtechniques used instandard basis function methodsare used withthe pseudospectral method;thiscombinationresults inaprogramthathas the (cid:13)exibilityofthebasisfunctionmethodsandthe speed ofthe pseudospectral operator construction. The accuracy of the pseudospectral method is demon- stratedusingexamplesofcalculationsonmethylene,silylene,andethylene,with avarietyofgeometries,spinstates,andwavefunctions. Chapter3demonstrates 6 thatthespeedandaccuracy pseudospectral methodsdisplayedwithclosed-shell Hartree-Fockwavefunctionscanbeextendedto: (i)generalwavefunctionswith arbitrary numbers of doubly-occupied core orbitals, singly-occupied open-shell orbitals, and variably occupied GVB natural orbitals; (ii) the calculation of physical properties of moleculesrather than total electronic energies; (iii)a va- riety of quality basis sets, including ones with di(cid:11)use functions; (iv) elements notinthe(cid:12)rstrowoftheperiodictable,inparticularSilicon;(v)moleculesthat use e(cid:11)ective core potentials. This work demonstrates that the pseudospectral method can be applied toany ofthe moleculescontainingmaingroup elements that the standard basis function methods can describe. Chapter 4 extends the methods of Chapter 3 to metallic elements, which present particular problems for the pseudospectral method. The nature of the chemical bonding is qualitatively di(cid:11)erent between metallic elements than be- tween non-metallic maingroup elements. Metallic systems have a wider range ofbondangles,bondlengthsandcoordinationsthandonon-metallicmolecules. Moreover, the electrons in metallic systems localize between atoms in metallic systems, whereas the electrons in molecules composed of main-group elements localizeontheatomsthemselves. Chapter 4demonstratesthatthepseudospec- tral method can be used to form the ab initio one- and two-electron operators forNickelclusters withoutlossofaccuracy. Chapter4alsodescribes the adjust- ments to the parameters used by the pseudospectral method that are needed to describe these systems. These parameters are optimized using Ni3 clusters with several di(cid:11)erent geometries. The generality of the optimized parameters is demonstrated by using them to determine a chemicalproperty of another Ni system. Chapter 4 demonstrates that on the scale of chemical properties the error thatthepseudospectral methodmakesrelativetothe standardbasisfunc- tion method is negligible. This work demonstrates that with the appropriate modi(cid:12)cations to the pseudospectral parameters to re(cid:13)ect the di(cid:11)erent nature of the metallic bonding, the pseudospectral method may be used to describe metallicsystems with virtuallyno loss of accuracy. Chapters3and4present methodstospeedtheconstructionoftheoperators required in ab initio electronic structure theory. Operator construction is the most computationallyintensive part of an ab initio calculation, and fast oper- ator construction is essential for performing this level of calculation on large molecules. Even with fast operator construction ab initio calculations can be di(cid:14)cultonlargemoleculesbecauseofslowconvergenceofthewavefunctionthat describes the electronic structure. The electronic wave function is obtained in an iterative fashion. A large number of iterations does not pose a serious dif- (cid:12)culty for small molecules because little work is required for each iteration; as the molecular size increases the work required for each iteration becomes sig- ni(cid:12)cant, and an e(cid:14)cient method for converging the electronic wave function is essential. Chapter 5 introduces the Direct Inversion in the Iterative Subspace method, developed by Pulay for converging Hartree-Fock wave functions, and extends ittogeneralwavefunctions witharbitrarynumbersofdoubly-occupied core orbitals, singly-occupied open-shell orbitals, and variably occupied GVB natural orbitals. These general wave functions are necessary to describe physi- 7 cal properties of real chemical systems. The convergence method described in Chapter5rapidlyconverges these wavefunctions,ofteninafractionofthetime required by standard convergence methods. The combination of the fast operator construction described in Chapters 3 and 4 and the rapid convergence algorithm described in Chapter 5 provides a method of accurately computing the electronic structure of large molecules. Chapter 6 describes an application of these methods to porphyrin molecules. Porphyrin moleculesare tetrapyrrole rings thatappear inavarietyofbiological applications including the photosynthetic reaction center and the heme group, as well as manyapplications in chemical catalysis. Because much of the chem- istry of porphyrin rings proceeds through the excited states, and because por- phyrins are primarily characterized through their optical absorption spectra, the porphyrinexcited states havelongbeenanareaofintense experimentaland theoreticalinvestigations. Approximatemethodsofelectronicstructure calcula- tions have suggested that the porphyrin excited states are composedofcoupled single excitations from the ground state. The combination of the large size of the porphyrin rings and the multi-con(cid:12)gurationalnature of the excited states have prevented ab initio calculations on the porphyrin excited states. Chapter 6 presents two di(cid:11)erent approaches to solve this di(cid:14)culty, both of which use the pseudospectral method of operator construction. The (cid:12)rst method takes advantage of the planar geometry of many porphyrin rings to separate the s and p orbitals of the molecules. A potential to replace the s electrons is cal- culated using the pseudospectral method. This potential is incorporated into standard basis function methods for calculating the multi-con(cid:12)gurational ex- cited states in the p space only. The second method calculates explicitly the multi-con(cid:12)gurational excited state energies and optimum orbitals. All of the operators required forthe energy expression and orbitaloptimizationequations are computed using the pseudospectral method. Both methods yield excellent agreement with experimental results. This thesis also includes two appendices. The (cid:12)rst appendix describes an e(cid:11)ective method to evaluate Hamiltonian matrix elements between electronic wave functions. Such evaluations are necessary in deriving energy expressions for Hartree-Fock, Generalized Valence Bond, and other types of wave func- tions. Theyalsocanbeusefulincomputingcouplingtermsbetween groundand excited determinants in Con(cid:12)guration Interaction and properties calculations. The second appendix describes the energy expression and orbital optimization equations for the Restricted Con(cid:12)guration Interaction wave function, a more accurate way to include electron correlation in a wave function that does not require afulltransformationofthetwo-electronintegrals. These appendices are included because they maybe of help to other researchers in this (cid:12)eld. The work presented in this thesis develops new methods forcalculating and converging electronic wave functions. These methods allow ab initio electronic structure theory calculations on molecules much larger than those that can be addressed by standard basis function methods. The use of larger molecules, in turn, allows theoretical chemists to use more accurate models to investigate chemicalinteractions. This thesis alsopresents anapplicationofthese methods 8 to the study of porphyrin excited states. The calculations on the porphyrins are signi(cid:12)cant not only because they demonstrate the types of molecules that can be studied withthe pseudospectral method,but alsobecause these calcula- tions show good agreement with experimental results for an importantclass of molecules. 9 Chapter 2 Ab Initio Overview of Electronic Structure Theory 2.1 Introduction Chapter 2 presents an overview of ab initio electronic structure theory and it reviews the standard methods that relate to topics later in this thesis. Section 2.2 describes the nature of electronic wave functions in general, and the closed- shellHartree-Fock(HF)wavefunctionsinparticular. Closed-shellHartree-Fock wavefunctionsareimportantbecause theyarethesimplestwavefunctionsused inelectronicstructure theory. Muchoftheworkdescribedinthisthesisinvolves extending methods developed for closed-shell Hartree-Fock wave functions to the moregeneral wave functions described in Section 2.7. Section 2.3describes open-shell Hartree-Fock wave functions, an extension of closed-shell Hartree- Fock theory to wave functions where some orbitals are singly-occupied. These wave functions are signi(cid:12)cant because they are the simplest wave functions where orbital optimizationbetween occupied orbitals is necessary. Hartree-Fockcalculationsgenerateagreatdealofinformationabouttheelec- tronic energy and density of the molecules they describe; Section 2.4 describes how this informationis interpreted to yield chemically important insights. Al- thoughHartree-Fockcalculationscanprovideagreatdealofimportantchemical information,there aremanytypes ofsystemsforwhichthesewavefunctionsare impractical or inappropriate, for example distorted or dissociated bonds or ex- cited states. Section 2.5describes these shortcomings,andSection2.6describes a convenient solution to many of them, namely the generalized valence bond wave (GVB) function. Generalized valence bond wave functions introduce de- grees offunctionalfreedomtotheelectronicwavefunctionandallowittoadjust more accurately to its particular environment. In addition, the equations for optimizingthis type of wave function are presented in this section. Section 2.7 summarizes Sections 2.2{2.6 by presenting the form of the gen- eralwavefunctionhavinganarbitrarynumberofdoubly-occupiedcore orbitals, 10

Description:
Apr 23, 1997 Quantum Chemistry Techniques for Application to Large Molecules 2 Overview of Ab Initio Electronic Structure Theory. 10. 2.1 Introduction .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.