Table Of ContentRucong Yu · Tianjun Zhou
Tongwen Wu · Wei Xue
Guangqing Zhou
Development
and Evaluation of
High Resolution
Climate System
Models
Development and Evaluation of High Resolution
Climate System Models
Rucong Yu Tianjun Zhou
(cid:129)
Tongwen Wu Wei Xue
(cid:129)
Guangqing Zhou
Development and Evaluation
of High Resolution Climate
System Models
123
Rucong Yu Wei Xue
ChinaMeteorological Administration TsinghuaUniversity
Beijing Beijing
China China
TianjunZhou Guangqing Zhou
Institute of Atmospheric Physics (IAP) Institute of Atmospheric Physics (IAP)
ChineseAcademy of Sciences ChineseAcademy of Sciences
Beijing Beijing
China China
TongwenWu
Beijing Climate Center
ChinaMeteorological Administration
Beijing
China
ISBN978-981-10-0031-7 ISBN978-981-10-0033-1 (eBook)
DOI 10.1007/978-981-10-0033-1
LibraryofCongressControlNumber:2015957774
©SpringerScience+BusinessMediaSingapore2016
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar
methodologynowknownorhereafterdeveloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom
therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor
foranyerrorsoromissionsthatmayhavebeenmade.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature
TheregisteredcompanyisSpringerScience+BusinessMediaSingaporePteLtd.
Preface
Climate system model (CSM) is an attempt to encapsulate everything we know
about the Earth System, which involves the atmosphere, hydrosphere, geosphere,
cryosphere, and biosphere, along with all of the interactions and feedbacks
involved. The CSM has been an irreplaceable tool that gives us a way of under-
standing the overall climate system—the past, present, and future climate change,
and the performance of the CSM has been an important objective criteria to eval-
uate thenation’sresponsecapability forclimate change. Therefore,developing the
CSM to improve capability of climate simulation and climate projection is one
of the most significant research areas in global change studies over the world.
However, the climate system is a complex system and hence the CSM is also
highlycomplicated.UncertaintiesoftheCSMareeverywhere.Themorecomplexa
model,themorefactorsittakesintoaccount,andthemoreuncertaintiesitincludes.
Currently, three critical scientific tasks to enhance capabilities of the CSM are
increasing the complexity of CSMs to encapsulate everything we know about the
Earth System, increasing resolutions to produce global climate predictions at
weather-resolving scales with lead times of several decades, and decreasing
uncertainty to provide more accurate simulations of present climate and more
credible and reliable predictions and projections offuture climates.
The development of CSMs in China has a solid foundation and long-term
accumulations. However, there are still significant gaps compared with developed
countries. In recent years, high resolution models have been developed in many
countries.Withtheabilitytodistinguisheventsandprocesseswithfinerspatialand
temporal scales, high resolution climate models have exhibited great potential for
large improvement in model performance. Taking into account that the climate of
China is significantly modulated by the complicated topography, there are urgent
needstodevelopourownhighresolutionCSMwithfocusonthecomplexclimate
conditions in eastern Asia and the Western Pacific.
With the support of major national scientific research projects on Global
Changes, the project “Development and validation of high resolution climate sys-
temmodel”wascarriedoutin2010,whichaimedtoshortenthegapbetweenChina
v
vi Preface
anddevelopedcountriesinclimatemodelingsciencethroughorganizingagroupof
distinguished scientists and engineers to build a high resolution CSM of China.
After nearly 5 years of hard work and perseverance, we have made encouraging
progress: a high resolution CSM has been established which has exhibited some
advantages in climate simulating, especially over East Asia; an evaluation and
validation system for high resolution climate modeling has been set up which
contains a series of innovative criteria focusing on specific features of East Asian
climate; an interactive ensemble coupled platform has been built to enable the
flexible application of model components and a thorough analysis of their inter-
actions. The major achievements of the project will be introduced in the following
parts of this book.
AstheChiefScientistofthisproject,Igreatlyacknowledgethesupportfromthe
MinistryofScienceandTechnologyofChina.Ialsoexpressmygreatappreciation
toallthemembers ofthisprojectfortheirhardwork,dedication,andcommitment
in these years.
Rucong Yu
Contents
1 Overview of the Chinese National Key Basic Research
Project Entitled “Development and Evaluation
of High-Resolution Climate System Models”. . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Demand for the Sustainable Development
of Economies and Society . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Scientific Basis for Climate Change Research. . . . . . . . . . 3
1.1.3 Expected Contributions to Solving Problems
at the National Level. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 General Goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Objectives of the 5-Year Project . . . . . . . . . . . . . . . . . . . 4
1.3 Subprojects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview of the Project Implementation. . . . . . . . . . . . . . . . . . . 7
1.5 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Development of a High-Resolution Version
of the BCC_CSM Global Climate System Model . . . . . . . 8
1.5.2 The Model Evaluation System . . . . . . . . . . . . . . . . . . . . 17
1.5.3 The MME Coupling Platform. . . . . . . . . . . . . . . . . . . . . 35
1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Studies on High-Resolution Atmospheric and Oceanic
General Circulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1 Improvements of the Dynamical Core
of the High-Resolution AGCM. . . . . . . . . . . . . . . . . . . . 50
2.3.2 Sensitivity of Simulated Climate to Dynamical Cores. . . . . 53
vii
viii Contents
2.3.3 Preliminary Results from the High-Resolution IAP
AGCM4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.4 CAR Validation and Its Application to Further Improve
the Performances of the Original Radiation Transfer
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.5 The Spread Related to Cloud and Radiation
Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.6 Dominant Roles of Subgrid-Scale Cloud Structures
in Model Differences of Cloud Radiative Effects. . . . . . . . 73
2.3.7 Incorporation of the CAR System into the Physical
Framework of IAP AGCM4. . . . . . . . . . . . . . . . . . . . . . 79
2.3.8 A High-Resolution Global Ocean General Circulation
Model Based on the Hybrid Coordinate Ocean Model . . . . 80
2.3.9 Other Achievements Related to IAP
Model Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3 Studies on the Model Dynamics and Physical Parameterizations
of the High-Resolution Version of the Global Climate System
Model BCC_CSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3.1 Advection Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3.2 The Parameterization of Gravity Wave Drag. . . . . . . . . . . 117
3.3.3 Further Development of the Cumulus Convection
Parameterization Scheme . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.4 Cloud and Its Interaction with Atmospheric Radiation . . . . 121
3.3.5 Improvements in the Parameterization of Surface
Turbulent Fluxes Between Air and Sea/Sea Ice. . . . . . . . . 131
3.3.6 Parameterizations of Land Surface Processes. . . . . . . . . . . 135
3.3.7 Vertical Mixing Processes in the Ocean. . . . . . . . . . . . . . 142
3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.4.1 The Stability of BCC_CSM . . . . . . . . . . . . . . . . . . . . . . 144
3.4.2 Global Distribution of Precipitation . . . . . . . . . . . . . . . . . 146
3.4.3 Regional Climate Over East Asia . . . . . . . . . . . . . . . . . . 149
3.4.4 SST Over the Tropical Pacific Ocean. . . . . . . . . . . . . . . . 155
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4 Development and Testing of a Multi-model Ensemble
Coupling Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Contents ix
4.3 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3.1 Multi-model Ensemble Coupling Framework . . . . . . . . . . 166
4.3.2 Validation of the Multi-model Ensemble Coupling
Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.3 Climate Impact of the Atmospheric Noise Investigated
by the IE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.3.4 Impacts of Atmospheric Noise on the Relationship
Between ENSO and North Pacific SST Investigated
by the IE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.3.5 The Role of Atmospheric Noise in the NAO
with the IE Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5 Metrics for Gauging Model Performance Over the East
Asian–Western Pacific Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3 Major Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.3.1 Metrics for East Asian Summer Monsoon Simulation. . . . . 211
5.3.2 Metrics for East Asian Cloud and Radiation
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.3.3 Tropical Cloud Simulation . . . . . . . . . . . . . . . . . . . . . . . 228
5.3.4 Processes for Improving Model Performance in ENSO
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.3.5 The Double ITCZ Bias in the Coupled Model. . . . . . . . . . 235
5.3.6 ENSO–Monsoon Relationship Simulated
by FGOALS-s2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.3.7 Decadal Prediction System of FGOALS-gl
and FGOALS-s2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.3.8 Other Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Chapter 1
Overview of the Chinese National Key
Basic Research Project Entitled
“
Development and Evaluation
of High-Resolution Climate System
”
Models
Rucong Yu, Tianjun Zhou, Tongwen Wu, Wei Xue
and Guangqing Zhou
Abstract An overview of the Chinese National Key Basic Research Project enti-
tled “Development and Evaluation of High-Resolution Climate System Models”
undergrantNo.2010CB951900ispresented.Thebackgroundandtheobjectivesof
theprojectareintroduced.Themainprogressmadeinthepast5yearsoftheproject
isthedevelopmentof“onesystem”and“twoplatforms”,where“onesystem”refers
to the high-resolution modeling system and “two platforms” refers to the
multi-model ensemble coupling platform and model evaluation system. The tech-
nical details of the high-resolution modeling system and multi-model ensemble
coupling platform are summarized. For the model evaluation system, instead of
presenting the details of the metrics used in gauging model performances, the
observationalmetricsareusedtoassesstheclimatemodelsdevelopedinthisproject
that employ low, middle, and high resolutions. The strengths and weaknesses of
adopting a higher model resolution are identified and discussed.
(cid:1) (cid:1) (cid:1)
Keywords Climate model High resolution Ensemble Metrics
1.1 Introduction
High-resolution climate system models are important tools for climate change
studies, and their development is a key topic within the climate change research
community. The sustainable development of economies and society also relies
heavily on support from high-resolution modeling, predictions, and projections of
the climate, as part of its decision- and policy-making processes.
©SpringerScience+BusinessMediaSingapore2016 1
R.Yuetal.,DevelopmentandEvaluationofHighResolution
ClimateSystemModels,DOI10.1007/978-981-10-0033-1_1