Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region JoseA.Jaramillo-Villegas,1,3,∗XiaoxiaoXue,1Pei-HsunWang,1DanielE.Leaird,1and AndrewM.Weiner1,2 1SchoolofElectricalandComputerEngineering,PurdueUniversity,WestLafayette,Indiana47907,USA 5 2BirckNanotechnologyCenter,PurdueUniversity,WestLafayette,Indiana47907,USA 1 3FacultaddeIngenier´ıas,UniversidadTecnolo´gicadePereira,Pereira,Risaralda660003,Colombia 0 ∗[email protected] 2 y Abstract: A path within the parameter space of detuning and pump a power is demonstrated in order to obtain a single cavity soliton (CS) with M certainty in SiN microring resonators in the anomalous dispersion regime. Once the single CS state is reached, it is possible to continue a path to 9 compressit,broadeningthecorrespondingsinglefreespectralrange(FSR) 1 Kerr frequency comb. The first step to achieve this goal is to identify the ] stable regions in the parameter space via numerical simulations of the s Lugiato-Lefever equation (LLE). Later, using this identification, we define c i a path from the stable modulation instability (SMI) region to the stable t p cavitysolitons(SCS)regionavoidingthechaoticandunstableregions. o . © 2015 Optical Society of America. One print or electronic copy may be made s forpersonaluseonly.Systematicreproductionanddistribution,duplicationofany c i materialinthispaperforafeeorforcommercialpurposes,ormodificationsofthe s contentofthispaperareprohibited. y h OCIS codes: (230.5750) Resonators; (190.5530) Pulse propagation and temporal solitons; p (190.4380)Nonlinearoptics,four-wavemixing. [ 2 v Referencesandlinks 4 1. T.Kippenberg,R.Holzwarth,andS.Diddams,“Microresonator-basedopticalfrequencycombs,”Science332, 4 555–559(2011). 2 2. S.B.PappandS.A.Diddams,“Spectralandtemporalcharacterizationofafused-quartz-microresonatoroptical 3 frequencycomb,” Phys.Rev.A84,053833(2011). 0 3. P.Del’Haye,A.Schliesser,O.Arcizet,T.Wilken,R.Holzwarth,andT.Kippenberg,“Opticalfrequencycomb . generationfromamonolithicmicroresonator,”Nature450,1214–1217(2007). 1 4. I.S.Grudinin,N.Yu,andL.Maleki,“GenerationofopticalfrequencycombswithaCaF2resonator,” Opt.Lett. 0 34,878–880(2009). 5 5. J.S.Levy,A.Gondarenko,M.A.Foster,A.C.Turner-Foster,A.L.Gaeta,andM.Lipson,“CMOS-compatible 1 multiple-wavelengthoscillatorforon-chipopticalinterconnects,”Nat.Photonics4,37–40(2009). : 6. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible v integratedopticalhyper-parametricoscillator,”Nat.Photonics4,41–45(2009). i X 7. F.Ferdous,H.Miao,D.E.Leaird,K.Srinivasan,J.Wang,L.Chen,L.T.Varghese,andA.M.Weiner,“Spectral line-by-linepulseshapingofon-chipmicroresonatorfrequencycombs,”Nat.Photonics5,770–776(2011). r 8. P.Del’Haye,T.Herr,E.Gavartin,M.Gorodetsky,R.Holzwarth,andT.Kippenberg,“Octavespanningtunable a frequencycombfromamicroresonator,” Phys.Rev.Lett.107,063901(2011). 9. M.A.Foster,J.S.Levy,O.Kuzucu,K.Saha,M.Lipson,andA.L.Gaeta,“Silicon-basedmonolithicoptical frequencycombsource,” Opt.Express19,14233–14239(2011). 10. Y.Okawachi,K.Saha,J.S.Levy,Y.H.Wen,M.Lipson,andA.L.Gaeta,“Octave-spanningfrequencycomb generationinasiliconnitridechip,” Opt.Lett.36,3398–3400(2011). 11. P.-H.Wang,F.Ferdous,H.Miao,J.Wang,D.E.Leaird,K.Srinivasan,L.Chen,V.Aksyuk,andA.M.Weiner, “Observationofcorrelationbetweenroutetoformation,coherence,noise,andcommunicationperformanceof Kerrcombs,” Opt.Express20,29284–29295(2012). 12. Y.K.ChemboandN.Yu,“Modalexpansionapproachtooptical-frequency-combgenerationwithmonolithic whispering-gallery-moderesonators,” Phys.Rev.A82,033801(2010). 13. L.A.LugiatoandR.Lefever,“Spatialdissipativestructuresinpassiveopticalsystems,” Phys.Rev.Lett.58, 2209(1987). 14. S.Coen,H.G.Randle,T.Sylvestre,andM.Erkintalo,“Modelingofoctave-spanningKerrfrequencycombs usingageneralizedmean-fieldLugiato-Lefevermodel,” Opt.Lett.38,37–39(2013). 15. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-moderesonators,” Phys.Rev.A87,053852(2013). 16. S.CoenandM.Erkintalo,“UniversalscalinglawsofKerrfrequencycombs,” Opt.Lett.38,1790–1792(2013). 17. T.Hansson,D.Modotto,andS.Wabnitz,“Dynamicsofthemodulationalinstabilityinmicroresonatorfrequency combs,” Phys.Rev.A88,023819(2013). 18. C.Godey,I.Balakireva,A.Coillet,andY.K.Chembo,“StabilityanalysisoftheLugiato-LefevermodelforKerr opticalfrequencycombs.PartI:caseofnormaldispersion,”arXivpreprintarXiv:1308.2539(2013). 19. I.Balakireva,A.Coillet,C.Godey,andY.K.Chembo,“StabilityanalysisoftheLugiato-LefevermodelforKerr opticalfrequencycombs.PartII:caseofanomalousdispersion,”arXivpreprintarXiv:1308.2542(2013). 20. M. R. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequencycombs,” Opt.Lett.38,3478–3481(2013). 21. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-moderesonators,”IEEEPhoton.J.5,6100409–6100409(2013). 22. M.ErkintaloandS.Coen,“CoherencepropertiesofKerrfrequencycombs,” Opt.Lett.39,283–286(2014). 23. P.Parra-Rivas,D.Gomila,M.Matias,S.Coen,andL.Gelens,“Dynamicsoflocalizedandpatternedstructures intheLugiato-Lefeverequationdeterminethestabilityandshapeofopticalfrequencycombs,” Phys.Rev.A89, 043813(2014). 24. A.CoilletandY.Chembo,“OntherobustnessofphaselockinginKerropticalfrequencycombs,”OpticsLetters 39,1529–1532(2014). 25. T.Hansson,D.Modotto,andS.Wabnitz,“OnthenumericalsimulationofKerrfrequencycombsusingcoupled modeequations,” Opt.Commun.312,134–136(2014). 26. T.Herr,V.Brasch,J.Jost,C.Wang,N.Kondratiev,M.Gorodetsky,andT.Kippenberg,“Temporalsolitonsin opticalmicroresonators,”Nat.Photonics8,145–152(2014). 27. P.-H.Wang,Y.Xuan,J.Wang,X.Xue,D.E.Leaird,M.Qi,andA.M.Weiner,“Coherentfrequencycomb generationinasiliconnitridemicroresonatorwithanomalousdispersion,”in“CLEO:ScienceandInnovations,” (OpticalSocietyofAmerica,2014),pp.SF2E–3. 1. Introduction An optical frequency comb is a light source with a number of highly resolved and nearly equidistant spectral lines. Since its introduction, multiple important applications have been demonstrated in areas such as communications, metrology, spectroscopy, astronomy and optical clocks. Optical frequency combs can be generated using mode-locked lasers or electro-optic modulation of continuous-wave light. Since 2007, multiple experiments have reported optical frequency comb generation by means of Kerr nonlinearity (wave mixing process) in microresonators, which offer potential for highly compact and portable solutions. SuchcombsaretermedKerropticalfrequencycombsorsimplyKerrcombs[1–11]. The understanding of underlying processes and dynamics in Kerr comb generation is critical to move this technology further to industry and applications. Chembo and Yu in [12] introduced one of the first simulation approaches using modal expansion. More recently, the Lugiato-Lefeverequation(LLE)[13]hasbeenwidelyadopted[14–24].Furthermore,Chembo and Menyuk in [15] demonstrated the equivalence between the LLE and mode coupling equationsmodelsandHanssonetal.in[25]showedthatbothmodelscanbenumericallysolved insimilarcomputationaltimes. Thegeneralizedmean-fieldLLEequationis: ∂E(t,τ) (cid:34) β (cid:18) ∂ (cid:19)k (cid:35) √ t = −α−iδ +iL∑ k i +iγL|E|2 E+ θE (1) R ∂t 0 k! ∂τ in k≥2 which is the nonlinear Schro¨dinger equation (NLSE) with damping, detuning and external pumping, which accurately describes Kerr comb generation. In this equation E(t,τ) is the complexenvelopeofthetotalintracavityfieldandhereaftersimplythefield,t isthesocalled slowtimevariable,τ isthefasttimevariable,t istheroundtriptime,α ishalfofthetotalloss R perroundtripwhichincludestheinternallinearabsorptionandcouplingloss,δ isthephase 0 detuning,Listhecavitylength,β isthek-orderdispersioncoefficient,γ istheKerrcoefficient, k θ isthecouplingcoefficientbetweenthewaveguideandthemicroresonatorandE isthepump in field(normalizedsuchthatP =|E |2).Tofacilitateouranalysesinamoregeneralframework in in wewilladditionallyusethenormalizeddetuningandpumpfieldaccordingtoEq.2and3. δ ∆= 0 (2) α (cid:114) γLθ S=E (3) in α3 Recently, some authors explored and identified regions corresponding to different types of operation in the detuning and pump power (∆,|S|2) parameter space in the anomalous dispersion regime [16,19,23]. The characterized regions are: stable modulation instability (SMI), unstable modulation instability (UMI), stable cavity solitons (SCS), unstable cavity solitons(UCS)andcontinuouswave(CW).Additionally,ErkintaloandCoenin[22]explored thefirst-ordercoherencepropertiesofeachregion. SingleCSgenerationisadesiredgoalinmuchresearchbecauseityieldsahighcoherence, singlefreespectralrange(FSR)Kerrcomb.Ithasbeensuggestedthatthisstyleofcombcan be used as information carriers in optical communications and optical memories. Although the first experimental observation of a single CS in microresonators was reported in [26], the difficultytocontrolthenumberofCSsintheSCSregionwasalsoemphasized.Inparticular,in theusualapproachinwhichdetuningisswepttoapredeterminedfinalvaluewithinputpower held constant, the number of CSs generated is probabilistic. In the current work, we show a methodnotonlytoobtainasingleCSwithahighdegreeofcertaintyavoidingthechaoticand unstableregionssuchasUMIandUCS,butalsotocompressit,movingthesystemthroughthe SCStohighpowervalues. 2. DeterministicSingleCSGeneration TheLLEissimulatednumericallyusingthesplitstepFouriermethod(SSFM).Thesimulation parameters used in this work are:t =1/226 GHz, β =−4.7×10−26 s2m−1, α =0.00161, R 2 γ=1.09W−1m−1,L=2π×100µmandθ =0.00064[27].Theseparameterscorrespondtoa Si N microringresonatorof100µmradiuswithanomalousdispersion,loadedqualityfactor 3 4 Qof1.67×106 andphotonlifetimet =t /(2α)=1.37ns.Addionally,thesimulationsare ph R doneinitializingtheintracavityfieldinthefrequencydomainE(ω)toacircularlysymmetric complex Gaussian noise field with a standard deviation σ = 10−9 [W1/2], which with noise normalizationP=|E|2isequivalenttoameanpowerof-150dBmpercavitymodeanduniform randomphase. ToshowtheprobabilisticnatureofthenumberofCSafteradetuningsweptatconstantpump powerweperformsimulationsaccordingtotheinsetsofFig.1(a).Theseinsetsdepicthowthe detuningissweptlinearlyfrom∆=0toafinalvalueof∆ overatimeintervalof0.3µs(≈218 f t ) at a constant |S|2 = 18.9 (P = 180 mW). Fig. 1(a) shows the number of temporal peaks ph in (intheSCSregionthiscorrespondstonumberofCSs)versusfinalvalueofdetuning∆.The f numberofCSsobtaineddependsverysensitivelyon∆ eventhoughthenoiseinitializationwas f thesameforallthesimulationsofFig.1(a).Additionally,thenumberofCSsisdifferentwhen werepeatthesimulationwiththesamedetuningandpumpparametersbutdifferentrealizations oftheinitialnoise,asshowninthehistogramofFig.1(b).Thebehaviorofthetotalintracavity energyU ,whichisproportionaltotheintegraloftheintensityoveraroundtriptime,give Intra usanideaoftheKerrcombstability.Fig.1(c)showstotalintracavityenergyduringadetuning swept at constant input power. The noisy behavior in the yellow segment gives us evidence that the system is in the UMI region. Then, the oscillatory behavior in the blue segment is a clearcharacteristicofUCSregion.Finally,thetotalintracavityenergybecomesstablewhenthe microresonatorapproachestheSCSregion.Ourhypothesisinthisworkisthattheuncertainty inthenumberofCSsintheSCSregionresultsfromchaoticfieldevolutionwhilethesystemis crossingtheUMIandUCSregions. (a) UMI UCS SCS CW 20 aks1126 S2|| 18.900 1 2 ∆0 1∆f 1.3 NPe 8 t[µs] t[µs] (b) 4 400 s 0 t 0 3 6 9 12 15 18 21 24 un ∆ o200 f C (c) a.u.a468 UMI UCS SCS 6912∆ 0 0N1Pea2ks3∆4f=512.6427(a8) UIntr2 3 0 0 1 1.1 1.2 1.3 t [µs] Fig.1.(a)Thenumberofpeaksasafunctionoffinalvalueofdetuning∆ with∆sweptas f shownintheinsets.Thepumppower|S|2issettoaconstantvalueof18.9(P =180mW). in Thesesimulationsweredoneusingthesamerealizationofinitialnoise.(b)Histogramof numberofpeaksfor1000simulationswithdifferentrealizationsofinitialnoise,usingthe same detuning and pump parameters in the simulation of (a) with ∆ =12.42. (c) Total f intracavityenergy(blue)anddetuning(green)asafunctionoftimeforthesimulationof (a)with∆ =12.42. f Although some of the boundaries between the regions can be solved analytically (e.g. Hamiltonian-Hopf limit between CW and SMI regions [23]), there is still no theoretical solution for the boundary between the SMI and UMI regions. Therefore, we characterize the (∆,|S|2)parameterspacevianumericalsimulationstogainknowledgeabouttheseboundaries. We initialize the microresonator pump at a detuning ∆=0 and power |S|2 =6.3 (60 mW) with well-defined behavior in the SMI region. This point corresponds to the location of the red triangle in Fig. 2(a) where a Turing rolls pattern [21,24] of 13 equally spaced peaks is formed. The intensity and power spectrum obtained at this point are shown in Fig. 2(c) (left) and (center), respectively. This pattern corresponds to a Kerr comb with frequency spacing between lines equal to 13 times the microresonator FSR and possesses low intensity noise and high stability, as shown by its steady state intracavity energy in Fig 2(c) (right). AccordingtoErkintaloandCoenin[22],theUMIregionexhibitshighfirst-ordercoherence. CoilletandChemboin[24]demonstratedthatTuringrollspatternsachievephaselockedstates independently of the initial conditions and can be easily generated by decreasing the optical frequencyofthepumplasertowardstheresonance,aspresentedintheirexperimentalexamples. These reasons make Turing rolls pattern a good choice for our initial point. After 200 ns, we jumpinasinglesteptoapointin(∆,|S|2)parameterspaceandkeepthesystemtherefor1.8µs (≈1310t ).Simulationswererepeatedusingthesamerealizationofinitialnoisefordifferent ph final values of detuning ∆ and pump power |S|2 up to 6.21 and 10.5 (100 mW), respectively. Fig. 2(a) shows the number of time domain peaks for each final point. Each point (∆,|S|2) is classified based on intensity, spectrum and total intracavity energy stability at the end of the simulation in order to determine the boundaries of the different operating regions. The characteristicsofeachregionareshowninFig.2(c)to(f)andtheresultofthisclassification isshowninFig.2(b).Notably,U intheUMIandUCSregionsischaracterizedbynoisyand Intra oscillatorybehavior,respectively,whileintheSMIandSCSregionsitisconstantasmentioned before. (a) 0.1 (b) 0.1 10 10 (d) (e) 0.09 14 0.09 9 9 8 0.08 12 8 0.08 0.07 0.07 7 10 7 S2|f 56 +00|.S4|22Offset00..0056[W]f 8 S2|f 56 (c) (f) 00..0056[W]f | 4 -0.42 0.04Pin 6 | 4 CW 0.04Pin SCS 3 S2| |Sf|2 0.03 4 3 UCS 0.03 2 |6.3 ∆ 0.02 2 2 SMI 0.02 1 ∆ 0 f 0.01 1 UMI 0.01 0 0.2µs 0 0 0 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 ∆ ∆ f f |E(t,τ)|2 a.u. |E˜(t,ω)|2 [dB] U a.u. Intra (c) 0 6 8 MI −40 4 S 4 2 −80 0 0 (d) 80 0 6 MI −40 4 40 U 2 −80 0 0 (e) 0 6 40 CS −40 4 U 20 2 −80 0 0 (f) 0 6 30 CS 20 −40 4 S 10 2 −80 0 0 −2 −1 0 1 2 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 τ [ps] ω [Prad/s] t [µs] Fig. 2. (a) The number of temporal peaks as a function of the final point in (∆,|S|2) parameter space at low pump power. The red triangle shows the initial point of the simulations.Thesesimulationsweredoneusingthesamerealizationofinitialnoise.The blackcurvescorrespondtoCATsusingEq.4with|S|2 of-0.42,0,and0.42equivalent Offset to offsets of -4, 0 and 4 mW respectively. (b) Characterized regions according to the features of each region shown in (c) to (f). (c-f) Final intensity (left), spectrum (center) andintracavityenergyversustimet(right)forthepoint(c)(∆ =0,|S|2=6.3)intheSMI f f region,(d)(∆ =3.9,|S|2=10.5)intheUMIregion,(e)(∆ =4.8,|S|2=10.5)inthe f f f f UCSregion,and(f)(∆ =4.8,|S|2=6.3)intheSCSregion. f f Because instantaneously jumping to a single final state in detuning-power parameter space as in the simulations of Figs. 2(a) is not physically realizable, we next define a path that can befollowedsmoothlybetweenourstartingpoint(∆=0,|S|2=6.3)andatargetpointchosen tofallwithinthesingleCSregion(∆=4.35,|S|2=5.04).Inparticular,weselectapaththat goesaroundthechaoticandunstableregions.Wecallsuchapathachaos-avoidingtrajectory (CAT).InthisstudyweconsideraCATgivenbythefollowing: |S|2=4.15exp(−3.09∆)+2.15exp(0.196∆)+|S|2 (4) Offset ThisCATisdefinedusingacurve-fittingtoolandtakestheformofatwo-termexponential function. Additionally, we introduce a power offset parameter |S|2 which allows us to Offset describeafamilyofCATs,portrayedbytheblackcurvesinFig.2(a).Totesttheperformance oftheCATwerunsimulationsinthreestages.Inthefirststagewedwellattheselectedinitial point (∆=0,|S|2 =6.3) for 1.0 µs (≈728 t ) to produce a steady state Kerr comb in the ph SMI regime. Next, we sweep the detuning linearly from ∆=0 to a final value ∆ over a 0.3 f µsinterval(≈218t )whilevaryingtheinputpoweraccordingtotheCATinEq.4.Wethen ph continuethesimulationatfixeddetuningandinputpowerforanadditional2µs(≈1445t ). ph (a) (b) 16 aks12 S2||f 6.3 1 1.3∆0 1∆f 1.3 nts1000 NPe 8 t t ou 500 4 Single CS C 0 0 0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8 ∆f NPeaks ∆f=7.45 (a) (c) (d) 0.42 0.42 2|Offset 0.201 2|Offset 0.201 S S |−0.21 |−0.21 −0.42 −0.42 0 2 4 6 8 10 12 0 2 4 6 8 10 12 ∆ ∆ f f Fig.3.(a)Thenumberofpeaksasafunctionoffinalvalueofdetuning∆ with∆swept f asshownintheinsetwithpumppoweradjustedthroughtheCAT,Eq.4,with|S|2 =0 Offset usingthesamerealizationofinitialnoiseforallsimulations.(b)Histogramofnumberof peaksfor1000simulationswithdifferentrealizationsofinitialnoisewiththesamepump power and detuning parameters of the simulation of (a) with ∆ =7.45. (c-d) Region in f which a single CS is generated when a uniform offset |S|2 is applied to the CAT for Offset differentvaluesoffinaldetuning∆ with(c)constantdetuningintervalof0.3 µsand(d) f constantdetuningspeedof25unitsof∆perµs. Figure3(a)showsthenumberoftemporalpeaksversusthefinalvalue∆ forfixedrealization f ofinitialnoise.Theinsetsillustratethecoordinatedvariationof∆and|S|2intimeaccordingto theCAT.Thegreenareadepictsarangeof∆ values(from4to10.8)forwhichasingleCSis f alwaysobtained.Inanothercasewekeep∆ fixedbutrepeatthesimulationfor1000different f realizationsofinitialnoise.AsshowninthehistogramofFig.3(b),asingleCSisobtainedevery time.Fig.3(c)issimilartoFig.3(a),inthatwekeepthenoiseinitializationfixedandvary∆, f except that now we use different values of |S|2 from -0.52 to 0.52 equivalent to an offset Offset of-5to5mWtotheCAT.Thegreenshadedareaagainshowsthecaseswherewegeneratea singleCS.Additionally,wetesttheCATperformancekeepingthesweeprateofthedetuning constantat25unitsof∆perµsfordifferentvaluesof∆.Thisisincontrasttothesimulationof f Fig.3(c)inwhichthedetuninginsweptoveraconstantintervalof0.3 µs,implyingdifferent sweep rates for different final detunings. The simulation results are displayed in Fig. 3(d), whichagainshowsagreenareainwhichasingleCSstateisreached.Moreover,weperform simulationsusinghalfandtwicethesweeprateofthedetuningwithverysimilarresultsofFig. 3(d).AllthesesimulationsdemonstratethattheCATforrepeatablegenerationofasingleCS is nonunique and can be robust over a finite range of operation. It should be emphasized that thisCATcouldtakeotherformsdifferentthanatwo-termexponentialfunction,providedthat itavoidstheunstableandchaoticregions. We note that thermal nonlinearities play an important role in practical microresonators. The response time of such thermal nonlinearities is much slower than that of the Kerr nonlinearity,whichcomplicatescomputationalstudies.Forthisreasonthermalnonlinearityis notincludedinthesimulationsinthispaper.Furtherresearchisrequiredtodeterminewhether thecurrentschemefordeterministicgenerationofsinglecavitysolitonsremainseffectivewith theinclusionofthermalnonlinearity.Ataminimumweanticipatethatitmaybenecessaryto slowdowntheCATsweepspeedtoatimescaleconsistentwiththethermalnonlinearity. 3. CScompression (a) 1 (b) 1 100 100 0.9 18 0.9 90 90 0.8 16 0.8 80 80 0.7 14 0.7 70 70 S2|f 5600 00..56[W]f 1102 S2|f 5600 00..56[W]f | 40 0.4Pin 8 | 40 SCS 0.4Pin 2300 S2||63|S∆f|2 00..23 46 2300 USCMCWSI 00..23 10 ∆ 0 f 0.1 2 10 UMI 0.1 0 0.2 µ s 0 0 0 0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 ∆ ∆ f f Fig.4.Thenumberoftemporalpeaksasafunctionofthefinalpointin(∆,|S|2)parameter space at high pump power. The red triangle shows the initial point of the simulations. Thesesimulationsweredoneusingthesamerealizationofinitialnoise.Theblackcurve correspondstoacompressionfunctionusingEq.5.Theinitialpointofthiscompression functionisthefinalpointoftheCATwith|S|2 =0inFig.2(a).(b)Characterizedregions Offset usingthesamecriteriaofFig.2(b). Our final goal is to demonstrate compression behavior when we move the system from relativelylowtorelativelyhighdetuningandpowerunderatrajectorythatremainswithinthe SCSregion.AprocesssimilartothecharacterizationofFig.2isperformedtoexplorebehavior over a larger range of parameter space (final values of detuning ∆ and input power |S|2 up to 31 and 105 (1 W), respectively), starting at initial point of detuning ∆=0 and pump power |S|2=63(0.6W).ThispointhashigherpowerthantheinitialpointusedinFig.2(a)becausein thishigherrangeofpower,themicroresonatorneedsmoreinitialenergytoshowallthepossible regions of behavior without collapsing to the CW state. The results of the simulations in this range and the classification are shown in Figs. 4(a) and 4(b), respectively. Then, we define a compression function from (∆=4.35,|S|2 =5.04), the end of a previous CAT trajectory, to (∆=27.45,|S|2=105)usingatrajectorygivenby |S|2=2.846exp(0.1316∆) (5) Again, this function is not unique, and a wide range of end points ∆ and |S|2 lead to similar results,providedthatthetrajectoryremainswithintheSCSregion. ToprovideacompletepictureofthegenerationandcompressionprocessesofasingleCS, we run a simulation in five stages, as shown in Fig. 5(a), which plots the coordinated change indetuningandinputpowerversusslowtime.Figure5(e)showstheintensityandspectrumof thesteadystateinitialpoint(Turingrollspatternof13temporalpeaks).InFig.5(b)theTuring rollspatternfallintoasingleCSaround1.4µs.Fig5(f)showstheintensityandspectrumofthe generatedsingleCS.InFig.5(c)we canobservehowtheKerrcombisbroadeningwhilethe systemisgoingthroughthecompressionfunctionbetween1.6µsand2.6µs.Figures5(f)and (g)showthattheCSiscompressedfrom73fsto29fsfullwidthathalfmaximum(FWHM) pulse width and the bandwidth ∆ω/2π goes from 3.98 to 10.2 THz. Figure 5(d) showsU Intra along a CAT leading to single CS generation and subsequent compression. Neither noisy nor oscillatorybehaviorisseen,providingevidencethatthesystemremainsinSMIorSCSregions forallsimulationtimeandshouldconsequentlybehighlystablewithlowintensitynoise. Although we are not taking into account high order dispersion terms and other nonlinear effects(e.g.Raman)thatwillbepresentinrealsystems,webelievetheseresultsmakeclearthat once a single CS state is reached compression should be possible while maintaining stability throughappropriatecoordinatedincreasesin∆and|S|2. (a)150 6 30 100 4 20 |E(t,τ)|2 a.u. |E˜(t,ω)|2 [dB] 2S| 50 2 1 1.3 10∆ (e) 0 | 0 s 9 0 µ −30 0 6 (b) −2 150 .1 −60 ps]−01 91020u. t= 03 −90 τ[ 1 60 a. (f) 24 0 30 s 2 µ6 16 −30 (c)0.8 0 .1 −60 s] 1 −20 = 8 / ] t −90 d1.2 −40B 0 Pra1.4 −60[d (g)150 0 ω[1.6 −80 sµ6100 −30 (d) 4 .3 −60 u. = 50 a.3 t −90 UIntra12 0−2 −1τ 0[ps]1 2 0.8 ω1 [P1.r2ad1/.4s]1.6 0 0 1 2 3 t [µs] Fig. 5. Generation and compression processes of a single CS through the CAT and compressionfunctionsinEq.4andEq.5,respectively.Fromtoptobottom:(a)pumppower (blue)anddetuning(green),(b)temporalintensity,(c)spectrum,(d)totalintracavityenergy vs.slowtimet.(e-g)Intensity(right)andspectrum(left)at(e)t=1µs,steadystateinitial point,(f)t=1.6µs,aftersingleCSgenerationand(g)t=3.6µs,aftercompression. 4. Conclusions In this work, we have presented a novel method to generate a single CS in anomalous dispersionmicroresonatorsinahighlydeterministicwaythroughcoordinatedtuningofpump frequencyandpowerinordertoavoidchaoticandunstableoperatingregimes.Thesimulation resultspresentedherecouldhelpaccelerateprogresstowardsestablishingmicroringresonators as highly coherent and stable single FSR Kerr comb sources for practical applications. Furthermore, we have also demonstrated a way to compress the single CS by further coordinatedvariationofthepumpparametersintheregionwhereCSsarestable. Acknowledgments This work was supported in part by the National Science Foundation under grant ECCS- 1102110, by the Air Force Office of Scientific Research under grant FA9550-12-1-0236, and by the DARPA PULSE program through grant W31P40- 13-1-0018 from AMRDEC. JAJ acknowledges support by Colciencias Colombia through the Francisco Jose de Caldas Conv.529scholarshipandFulbrightColombia.JAJisgratefultoVictorTorres-Companyand EvgeniiNarimanovforfruitfuldiscussionsandtoJosephLukensforacarefulreadingofthis manuscript.