ebook img

Determination of |V_ub| from Measurements of the Inclusive Charmless Semileptonic Partial Rates of B Mesons using Full Reconstruction Tags PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determination of |V_ub| from Measurements of the Inclusive Charmless Semileptonic Partial Rates of B Mesons using Full Reconstruction Tags

Determination of V from Measurements of the Inclusive Charmless Semileptonic ub Partia|l R|ates of B Mesons using Full Reconstruction Tags I. Bizjak,12 K. Abe,7 K. Abe,41 H. Aihara,43 Y. Asano,47 S. Bahinipati,4 A. M. Bakich,38 Y. Ban,32 E. Barberio,19 M. Barbero,6 A. Bay,16 U. Bitenc,12 S. Blyth,24 A. Bondar,1 A. Bozek,25 M. Braˇcko,7,18,12 J. Brodzicka,25 T. E. Browder,6 Y. Chao,24 A. Chen,22 W. T. Chen,22 B. G. Cheon,3 R. Chistov,11 S.-K. Choi,5 Y. Choi,37 Y. K. Choi,37 A. Chuvikov,33 S. Cole,38 J. Dalseno,19 M. Danilov,11 M. Dash,48 L. Y. Dong,9 A. Drutskoy,4 S. Eidelman,1 Y. Enari,20 F. Fang,6 S. Fratina,12 N. Gabyshev,1 A. Garmash,33 T. Gershon,7 G. Gokhroo,39 B. Golob,17,12 A. Goriˇsek,12 J. Haba,7 T. Hara,30 H. Hayashii,21 M. Hazumi,7 L. Hinz,16 T. Hokuue,20 Y. Hoshi,41 S. Hou,22 W.-S. Hou,24 T. Iijima,20 A. Imoto,21 K. Inami,20 A. Ishikawa,7 R. Itoh,7 M. Iwasaki,43 Y. Iwasaki,7 J. H. Kang,49 J. S. Kang,14 P. Kapusta,25 N. Katayama,7 H. Kawai,2 T. Kawasaki,27 H. R. Khan,44 H. Kichimi,7 H. J. Kim,15 S. M. Kim,37 K. Kinoshita,4 S. Korpar,18,12 P. Kriˇzan,17,12 6 P. Krokovny,1 R. Kulasiri,4 S. Kumar,31 C. C. Kuo,22 A. Kuzmin,1 Y.-J. Kwon,49 G. Leder,10 S. E. Lee,36 0 T. Lesiak,25 J. Li,35 A. Limosani,7 S.-W. Lin,24 D. Liventsev,11 J. MacNaughton,10 G. Majumder,39 0 F. Mandl,10 T. Matsumoto,45 A. Matyja,25 Y. Mikami,42 W. Mitaroff,10 K. Miyabayashi,21 H. Miyake,30 2 H. Miyata,27 R. Mizuk,11 T. Nagamine,42 Y. Nagasaka,8 I. Nakamura,7 E. Nakano,29 M. Nakao,7 n Z. Natkaniec,25 S. Nishida,7 O. Nitoh,46 T. Nozaki,7 S. Ogawa,40 T. Ohshima,20 T. Okabe,20 S. Okuno,13 a J S. L. Olsen,6 Y. Onuki,27 W. Ostrowicz,25 P. Pakhlov,11 H. Park,15 N. Parslow,38 L. S. Peak,38 R. Pestotnik,12 2 L. E. Piilonen,48 M. Rozanska,25 H. Sagawa,7 Y. Sakai,7 N. Sato,20 T. Schietinger,16 O. Schneider,16 2 P. Scho¨nmeier,42 C. Schwanda,10 K. Senyo,20 M. E. Sevior,19 H. Shibuya,40 B. Shwartz,1 V. Sidorov,1 A. Somov,4 N. Soni,31 R. Stamen,7 S. Staniˇc,28 M. Stariˇc,12 T. Sumiyoshi,45 S. Suzuki,34 S. Y. Suzuki,7 O. Tajima,7 2 v F. Takasaki,7 K. Tamai,7 N. Tamura,27 M. Tanaka,7 Y. Teramoto,29 X. C. Tian,32 T. Tsuboyama,7 8 T. Tsukamoto,7 S. Uehara,7 T. Uglov,11 K. Ueno,24 S. Uno,7 P. Urquijo,19 G. Varner,6 K. E. Varvell,38 8 S. Villa,16 C. C. Wang,24 C. H. Wang,23 Y. Watanabe,44 Q. L. Xie,9 B. D. Yabsley,48 A. Yamaguchi,42 0 5 Y. Yamashita,26 M. Yamauchi,7 Heyoung Yang,36 L. M. Zhang,35 Z. P. Zhang,35 V. Zhilich,1 and D. Zˇontar17,12 0 (The Belle Collaboration) 5 0 1Budker Institute of Nuclear Physics, Novosibirsk / 2Chiba University, Chiba x 3Chonnam National University, Kwangju e 4University of Cincinnati, Cincinnati, Ohio 45221 - p 5Gyeongsang National University, Chinju e 6University of Hawaii, Honolulu, Hawaii 96822 h 7High Energy Accelerator Research Organization (KEK), Tsukuba : 8Hiroshima Institute of Technology, Hiroshima v i 9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing X 10Institute of High Energy Physics, Vienna r 11Institute for Theoretical and Experimental Physics, Moscow a 12J. Stefan Institute, Ljubljana 13Kanagawa University, Yokohama 14Korea University, Seoul 15Kyungpook National University, Taegu 16Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne 17University of Ljubljana, Ljubljana 18University of Maribor, Maribor 19University of Melbourne, Victoria 20Nagoya University, Nagoya 21Nara Women’s University, Nara 22National Central University, Chung-li 23National United University, Miao Li 24Department of Physics, National Taiwan University, Taipei 25H. Niewodniczanski Institute of Nuclear Physics, Krakow 26Nippon Dental University, Niigata 27Niigata University, Niigata 28Nova Gorica Polytechnic, Nova Gorica 29Osaka City University, Osaka 30Osaka University, Osaka 31Panjab University, Chandigarh 2 32Peking University, Beijing 33Princeton University, Princeton, New Jersey 08544 34Saga University, Saga 35University of Science and Technology of China, Hefei 36Seoul National University, Seoul 37Sungkyunkwan University, Suwon 38University of Sydney, Sydney NSW 39Tata Institute of Fundamental Research, Bombay 40Toho University, Funabashi 41Tohoku Gakuin University, Tagajo 42Tohoku University, Sendai 43Department of Physics, University of Tokyo, Tokyo 44Tokyo Institute of Technology, Tokyo 45Tokyo Metropolitan University, Tokyo 46Tokyo University of Agriculture and Technology, Tokyo 47University of Tsukuba, Tsukuba 48Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 49Yonsei University, Seoul We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|, based on 253 fb−1 of data collected by the Belle detector at the KEKB e+e− asymmetric collider. Events are tagged by fully reconstructing one of the B mesons, produced in pairs from Υ(4S). The signal for b → u semileptonic decay is distinguished from the b → c background using the hadronic mass MX, the leptonic invariant mass squared q2 and the variable P+ ≡ EX −|p~X|. The results ∗ are obtained for events with the prompt-lepton momentum, pℓ ≥ 1GeV/c, in three kinematic regions (1) MX < 1.7 GeV/c2, (2) MX < 1.7 GeV/c2 combined with q2 > 8 GeV2/c2, and by (3) P+ < 0.66 GeV/c, allowing for a comparison of the three methods. The matrix element |Vub| is found to be (4.09±0.19±0.20+0.14 ±0.18)×10−3, where the errors are statistical, systematic −0.15 including Monte Carlo modeling, theoretical and from shape function parameter determination, respectively. PACSnumbers: 12.15.Hh,11.30.Er,13.25.Hw An accurate knowledge of the Cabibbo-Kobayashi- bytheoreticalstudies[1,2],basedonthethreekinematic Maskawamatrixelement Vub iscrucialtotestStandard variables, and are directly compared by this analysis. | | Model predictions for CP violation. Currently, the best The value of Vub is extracted using recent theoretical | | precisionmaybeachievedbymeasuringtheinclusiverate calculations [2, 3] that include all the currently known ∆Γuℓν(∆Φ)ofB Xuℓν decaysinarestrictedregionof contributions. MX and q2 selections were already used → the phase space (∆Φ) where the dominant charm back- to to extract Vub [4, 5]. The presentanalysisis the first | | ground is suppressed and theoretical uncertainties are onetouseP andtodirectlycomparethethreemethods. + minimized. ThetheoreticalfactorR(∆Φ)directlyrelates The data were collected with the Belle detector [6] at the inclusive rate to Vub , with no extrapolation to the | | the asymmetric-energy KEKB storage ring [7]. The re- full phase space: |Vub|2 = ∆Γuℓν(∆Φ)/R(∆Φ). Here we sults presented in this paper are based on a 253 fb−1 reportmeasurementsof∆Γuℓν(∆Φ)forseveralchoicesof sample recorded at the Υ(4S) resonance, which con- ∆Φ and derive the corresponding values of |Vub|. tains 275 106 BB pairs. An additional 28 fb−1 sam- × ple taken at a center-of-mass energy 60MeV below the The measurements are made with a sample of events Υ(4S)resonanceisusedtosubtractthebackgroundfrom wherethehadronicdecaymodeofthetaggingsideB me- e+e− qq¯(q =u, d, s, c). son, Btag, is fully reconstructed, while the semileptonic → decayofthesignalsideBmeson,B ,isidentifiedbythe Monte Carlo (MC) simulated events were used to de- sig presence of a high momentum electron or muon. B de- termine efficiencies as well as signal and background notes both charged and neutral B mesons. This method distributions. The detector simulation was based on allows the construction of the invariant masses of the GEANT [8]. To model B Xuℓν we use the Evt- → hadronic(MX)andleptonic(pq2)systeminthesemilep- Gen generator [9] with various models, where Xu is π tonic decay, and the variable P+ EX p~X , where or ρ [10], an excited Xu state [11], or a non-resonant ≡ − | | EX is the energy and p~X the magnitude of the three- multiparticle final state [12]. The B Xcℓν transitions | | → momentumofthehadronicsystem. Theseinclusivekine- are simulated according to the QQ generator [13]. For matic variables can be used to separate the B Xuℓν the two dominant contributions, D∗ℓν and Dℓν, we use → decaysfromthemuchmoreabundantB Xcℓν decays. anHQET-basedparametrizationofformfactors[14]and Three competing kinematic regions (∆Φ)→were proposed ISGW2 model [11], respectively. For the D∗∗ we use 3 qdIBSuu→GacDtrWBik1o→ℓn2iνnD+osm∗Bif∗d→oℓaeνdDets2∗hlhℓeaνapnBe=dmffu0oen.rs3cot5sniuo±bins-c0i[m1o.22mp3,lp.e1om5nT]eethnnhettaesdtmDdwo1etisitocahnrnitdbhoeefDsittn2∗hhtesreeobbt- 2nts / 1 MeV/c 2205000000 (a) Events / bin 450000 bb→→uc (MMbCC) e data quark momentum distribution inside the B meson. Ev 15000 300 The Btag candidates are reconstructed in the modes 10000 200 BK+π→+π−Dπ(−∗),πK/ρ0/πa01,/KDs(0∗π),+πD−0, K→0π+Kπ−+ππ0−a,ndKK+π+−Kπ−0,, 5000 100 S S S DKK−S0+πK−−→ππ−+π.+KD+a∗nπd−mπeK−so,+nKsK−a+rπeπ−−r,eπca−onnπds0t,rDus+cKteS0d→π−by,KcS0KoKmS0+bπi−naiπnn0dg, 05.22 5.24 5.26Mbc(Ge5.V28/c2) 00 0.5 1 1.5 2 M2x .5(GeV3/c2) a D candidate and a soft pion or photon. (Inclusion of FIG. 1: (a) Distribution in Mbc (data) of Btag candidates charge conjugate decays is implied throughout this pa- in events satisfying Bsig selection. (b) MX distribution for per.) The selection of B candidates is based on the events with q2 > 8 GeV2/c2, with fitted contributions of tag abneadmt-hceonesntrearginyeddiffmearessn,ceM, b∆cE==pEE∗b∗2eamE/c∗4−.p∗B2H/ecr2e, B→Xcℓν and B→Xuℓν. E∗ = √s/2 5.290GeV is the beBam− enbeeragmy in the e+beea−mcenter-of-m≃ass system (cms), and p∗ and E∗ are moving poorly measured soft charged tracks and impos- B B ing several additional requirements to reject poorly re- the cms momentum and energy of the reconstructed B constructed events and suppress the B Xcℓν back- meson. (Throughout this paper the variables calculated → ground. We require that the event contain exactly one in the cms are denoted with an asterisk.) lepton and have zero net charge and that the invariant The combinatorial background from jet-like e+e− mass squared of the missing four-momentum m2 qqqu¯irpermoecnestsbesaseisdsounptphreesnsoedrmbaylizeadnseevcoenntd Ftoopxo-Wlogoylfrar→me- (pΥ(4S) − pBtag − pX − pℓ)2 (pΥ(4S), pBtag and pmXissar≡e four-momenta of the Υ(4S), B , and hadronic system tag moment R2 < 0.5 [16], and for some modes also by (X), respectively) be within 1 m2 0.5GeV2/c4. cosθ∗ <0.8, where θ∗ is the angle between the − ≤ miss ≤ | thrust| thrust To suppress the B Xcℓν background, events with thrust axis of the Btag candidate and that of the rest a K± or KS0 candida→te on the signal side are rejected of the event. To minimize the fraction of events with (kaon veto). To reject events containing a K0, we re- L incorrect separation of tag and signal sides while main- quire that the angle between the missing momentum taining high signal efficiency, a loose selection require- and the direction of any K0 candidate, reconstructed mentofMbc ≥5.22GeV/c2 and−0.2<∆E <0.05GeV in the KL0 detector, be greaLter than 37 degrees. We is made. If an event has multiple Btag candidates, we also reject B0 D∗+ℓ−ν¯ events by detecting the slow Dchocoasnedtihdeatoenemhaasvs,inagntdhethsemDall∗est χD2 mbaassesddoinffe∆reEn,cethief mpioomne(nπtsu)mfrothme→Dm∗o+me→ntuDm0πosf+thanedDd∗e+d.ucTinhgefrmomissiintgs − applicable. mass squared m2miss(D∗) = (pB − pD∗ − pℓ)2 is calcu- For events tagged by fully reconstructed Btag candi- lated from the reconstructed quantities, and events with dates,wesearchforelectronsormuonsfromsemileptonic m2 > 3GeV2/c4 are rejected. ∗ miss(D∗) − decays of Bsig. We require a lepton with momentum pℓ Finally,thekinematicvariablesMX andP+ arecalcu- exceeding1GeV/cinthelaboratorypolarangularregion lated from the measured momenta of all charged tracks of26◦ θ 140◦. LeptonsfromJ/ψ decay,photoncon- and energy deposits of all neutral clusters in the elec- ≤ ≤ versionin the material of the detector, and π0 decay are tromagnetic calorimeter that are not used in the B tag rejected based on the invariant mass they form in com- reconstruction or for the lepton candidate. The four- bination with an oppositely charged lepton and for elec- momentum of the leptonic system is calculated as q = ttrhoenBctaagndciadnadtiedsaatelsoiswchitahrgaend,awdediatlisoonarelqpuhiroetotnh.e lWephtoenn apnΥd(4SP)+−aprBetaogb−taipnXed. TbyhefitdtiisntgribthuetioMnsbcodfiesvtreinbtustiinonM, aXs charge to be consistent with that from prompt semilep- described above, in bins of MX and P+. Figures 1(b), tonic decay. The signal yield is obtained by fitting the 2(a) and 3(a) show the resulting MX and P+ distribu- Mbc distributiontothesumofanempiricalparametriza- tions. We define three kinematic signalregions (∆Φ) for tion of the combinatorial background shape [17] plus a eventswherethepromptleptonhasp∗ 1GeV/c: P < ℓ + signal shape [18] that peaks at the B mass and taking 0.66 GeV/c,MX <1.7 GeV/c2,andM≥X <1.7 GeV/c2 the part of the signal that lies in the “signal region,” combined with q2 > 8 GeV2/c2. These three regions Mbc ≥ 5.27GeV/c2, as shown in Fig. 1(a). The cut- are denoted as P+, MX and MX/q2, respectively. To off for Mbc reduces the uncertainty from the incorrect minimizethesystematiceffectsofuncertaintiesinlepton assignment of tag and signal sides in signal events. selection and full reconstruction, we normalize the par- The B Xuℓν signal events are selected by re- tialrateforeachsignalregionwiththetotalsemileptonic → 4 TsiAgnBaLlEregI:ioNnsbr.→awu, εsbe→lu, F and rbsl→u for the three kinematic nts / bin23500000 (a) 10 MeV110200 rseiggnioanl← (b) ∆MΦX/q2 26N8br±→aw2u7 2ε6sb.e→5l%u 1.F03 0.687rbs±l→0u.014 Eve12500000 dbba→→tauc MMCC Events / 1468000 MX 404±37 28.7% 1.07 0.700±0.011 20 P+ 340±32 25.5% 1.01 0.700±0.012 1000 0 500 -20 0 0 1 2 3 4 5 0 0.5 1 1.5 2 rate: P+ (GeV) P+ (GeV) W = ∆Γuℓν(∆Φ) = Nbr→awu F εsfrlec εsℓl . (1) FIG. 2: (a) The P+ distribution for theselected events,with Γ(Xℓν) Nsl ×εsbe→lu ×εfbr→ecu×εbℓ→u fitted contributions from B → Xcℓν and B → Xuℓν, (b) P+ distribution (symbols with error bars) after subtracting To extract the raw number of signal events, Nbr→awu, we B→Xcℓν,with fitted B→Xuℓν contribution (histogram). fit the MX and P+ distributions with MC-determined shapes for B Xuℓν and B Xcℓν and subtract the B Xcℓν con→tribution. The r→esults for the MX/q2 and TABLEII:Partialratestothethreekinematicsignalregions → with relative errors (in %). P regionsareshowninFigs.1(b)and2(a),respectively. + MC simulation is used to estimate the conversion factor ∆Φ ∆Γuℓν(∆Φ) stat syst b→u b→c F of the observed number of events Nbr→awu to the num- MX/q2 5.24×10−4 ps−1 10.0 8.9 6.2 5.3 ber of signal events produced in the region in question MX 7.71×10−4 ps−1 9.1 7.1 6.1 2.2 and observed anywhere, and to estimate the efficiency P+ 6.89×10−4 ps−1 9.4 9.3 6.4 8.7 for these events, εb→u. sel N =(9.14 0.05) 104isthenumberofeventshaving sl atleastonelep±tonwit×hp∗ 1GeV/c,determinedfroma ℓ ≥ fittothecorrespondingM distribution(Fig.1(a)),and choice of specific theoretical models and values of the bc correctedfor the expected fraction of backgroundevents parameters used in our MC predictions. For signal from non-semileptonic decays (14.0%), as estimated by B Xuℓν MC, the shape function parameters ΛSF = MC simulation. The factor εsfrlec/εfbr→ecu accounts for a (0.6→6±0.15)GeV/c2 and λS1F =−(0.40±0.20)GeV2/c2 possible difference in the B reconstruction efficiency were varied within the stated limits, taking into account tag in the presence of a semileptonic or B Xuℓν decay; the negative correlationbetween them [20]. To take into εsl/εb→u is the ratio of both lepton ide→ntification effi- accountthe uncertaintyofthe predictioninRef. [12], we ℓ ℓ ciencies and fractions of semileptonic decay leptons with use a factor of two larger error for ΛSF than was deter- p∗ 1GeV/c, in the whole kinematic phase space for mined in Ref. [20]. For B Xcℓν MC, the uncertainty ℓ ≥ → semileptonic decays, and within the kinematic signal re- due to our limited knowledge of branching fractions is ∗ gion for signal events. The product of efficiency ratios studied by varying the contributions of Dℓν and D ℓν rubsll→atuio≡n.εTsfrlaecb/leεbfrI→ecsuu×mmεsℓal/rεizℓbe→suthiseorbestualitnsedforfrNomrawM,Cεbs→imu-, aconndtrthibeurteelatotivDe∗f∗rℓaνcttioonesotfimnaartreotwhestmatoedseDlin1gaenrdroDr2∗ofththaet b→u sel F and rsl for all three signal regions, where the error b→u in Nraw is statistical only. Inserting these values in Eq. 1, web→oubtain the three values of W. As both numerator 2eV/c800 rseiggnioanl← (a) 2eV/c112550 rseiggnioanl← (b) anddenominatorofW havebeenobtainedfromthesame M700 M thaagssnaomdpelep,etnhdeenBc0e/oBn+liwfeetiigmhetisn.gMs aurletitphlyeinsagmWe, abnydtWhe nts / 120 560000 dbba→→tauc MMCC nts / 120 17050 average measured semileptonic rate Γ(Xℓν) = (B Eve400 Eve50 B → Xℓν)/τB, obtainedfrom (B Xℓν)=0.1073 0.0028 300 25 B → ± and τB = (1.604 0.016) ps [19], gives the average 200 0 ± ∆Γuℓν(∆Φ). The results with relative errors are given 100 -25 in Table II. 0 0 1 2 3 4 5 0 1 2 3 4 5 We divide the experimental error into four categories: M (GeV/c2) M (GeV/c2) x x statistical, systematic, b c and b u MC mod- → → eling errors, and summarize them in Table II for the FIG.3: MX distribution(noq2 requirement)withfittedcon- three ∆Γuℓν(∆Φ) measurements. The two modeling er- tributions from Xcℓν and Xuℓν: (a) before and (b) after rors include the uncertainty in signal event extraction, subtractingtheXcℓν contribution (symbolswith error bars), efficiency and unfolding factor determination due to the shown with theprediction for Xuℓν (MC, histogram). 5 D∗∗ region. The uncertainty from form factor modeling in Dℓν andD∗ℓν wasstudied by varyingthe parameters TABLEIII:Valuesfor|Vub|withrelativeerrors(in%)forthe three kinematic signal regions. Shape function parameters ρ2D = 1.15±0.16 and ρ2A = 1.56±0.13 within their er- used in the calculation are mb(SF) = (4.60±0.04) GeV/c2 rors [19]. The validity of the B → Xcℓν simulation was and µ2π(SF)=(0.20±0.04) GeV2/c2. tested on a B Xcℓν enhanced control sample, where → all selection requirements are applied but with the kaon ∆Φ |Vub|×103 stat syst b→u b→c SF th. veto reversed. The kinematic distributions of this con- MX/q2 4.70 5.0 4.4 3.1 2.7 4.2 +−45..82 trol sample are accurately described by the simulation. MX 4.09 4.6 3.5 3.1 1.1 4.5 +−33..58 Othersourcesofuncertainties,namelylimitedMCstatis- P+ 4.19 4.7 4.6 3.2 4.4 5.8 +−33..45 tics, extraction of rsl , fitting procedure and imperfect b→u detectorsimulationarecombinedinthesystematicerror. The uncertainties due to inaccurate simulation of track- ing, particle identification, and cluster finding are esti- selection q2 > 8 GeV2/c2 to the MX analysis. Tak- mated by varying for each source the efficiency within ing correlations into account, we find that the difference the expected error and taking the maximum change in between Vub values for MX/q2 and MX regions has a ∆Γuℓν(∆Φ) as the error. For each of these sources the significan|ce o|f 2.7σ. We conclude that the results are effects on simulated b u and b c events are cor- consistent within errors, but we do not rule out possible → → related, and the associated shifts are summed linearly. effects of duality violation or weak annihilation contri- The net contributions from the three sources are then bution. We chose the MX signal region result for our summed in quadrature. Vub determination, since it includes the largest portion The CKM matrix element Vub is obtained directly |of ph|ase space and is least affected by the uncertainties: | | Rfro(∆mΦt)heispathrteiatlhreaotreetuicsianlgp|rVeudbi|c2ti=on∆oΓfu∆ℓνΓ(∆uℓΦν()∆/RΦ()∆, Φth)e. |tVhueb|er=ro(r4s.0a9re±st0a.t1i9st±ica0l,.2s0y−+st00e..11m54a±tic0.w1i8t)h×M1C0−m3o,dwelhinerge, partialratewithapromptleptonwithp∗ 1GeV/c,di- ℓ theoretical and from shape function parameter determi- vtoidebdeb2y3.|7Vub|22..0T(hSeF)v+al2u.5e(sthof.)R, 4(i6n.1ps−14).≥2a(rSeFc)a+lc3u.5l(atthe.d) nation, respectively. The effectiveness of |Vub| measure- and 39.4 ±±4.5(SF)+−22−..872(.t3h.) for the±MX/q2, M−3X.2 and manednt3s(ubs)i)n.gfullreconstructiontaggingisclear(Figs.2(b) P signal regions, respectively. The R(∆Φ) values and + We thank the KEKB group for excellent accelerator their errors(SF) are calculated using the shape function operations, the KEK cryogenics group for efficient oper- ascnhdemµe2([S1F5])p=ara(0m.2et0ers0m.0b4(S)FG)e=V(24/.c620±wi0th.04c)orGreelVat/iocn2 ation of the solenoid, and the KEK computer groupand π ± NII for valuable computing and Super-SINET network coefficient ρ = 0.26, obtained from the result of a − support. WeacknowledgesupportfromMEXTandJSPS global fit to moments of both b cℓν and b sγ → → (Japan); ARC and DEST (Australia); NSFC (contract distributions [21]. While the dependence of R(∆Φ) on No. 10175071, China); DST (India); the BK21 program µ2(SF) is small, we can approximate the dependence on π of MOEHRD and the CHEP SRC program of KOSEF mmb0(=SF4).6a0s RG/eRV(/mc20b)a−nd1k=(∆kΦ(∆)Φis)f·o(umndb/tmo0bb−e 21.)0,9w,h2e.2r9e (Korea); KBN (contract No. 2P03B 01324, Poland); b MIST (Russia); MHEST (Slovenia); SNSF (Switzer- and 3.00 for the MX/q2, MX and P+ signal regions, re- land); NSC and MOE (Taiwan); and DOE (USA). spectively. The theoretical error of R (th.) is estimated We are grateful to B. Lange, M. Neubert and G. Paz byvaryingthesubleadingshapefunctions(fourmodels), for providing us with their theoretical computations im- the matchingscalesµh, µi, µ¯ andweakannihilation[15]. plemented in an inclusive generator. We would specially Thevaluesof Vub witherrorsaregiveninTableIII.The | | like to thank M. Neubert for valuable discussions and totalerroron Vub is 10%, 9%and 11%for MX/q2, MX | | suggestions. and P regions, respectively. When the shape function + parameters and R are better determined, Vub can be | | recalculated from ∆Γuℓν(∆Φ) shown in Table II. The precisionofthe Vub determinationis better than | | previous measurements [4, 5, 22], owing to the use of [1] C. W. Bauer, Z. Ligeti and M. Luke, Phys. Rev. D 64, larger data sample, better shape function parameter de- 113004 (2001). termination and improved theoretical predictions [2, 3]. [2] S. W. Bosch, B. O. Lange, M. Neubert and G. Paz, We find that the usage of the variable P is more sensi- PhysRevLett.93,221801(2004); Nucl.Phys.B699,335 + (2004). tive to b c modeling and shape function parametriza- → [3] M. Neubert,Eur.Phys.J. C40, 165 (2005); Phys.Lett. tion than the other two methods and will become com- B612,13(2005);hep-ph/0411027;S.W.Bosch,M.Neu- petitive in the future when the theoretical error of R bert and G. Paz, JHEP 0411, 073 (2004). dominates. No significant experimental nor theoretical [4] B.Aubertetal.(BaBarCollaboration),Phys.Rev.Lett. improvement was observed by applying the additional 92, 071802 (2004). 6 [5] H.Kakunoet al.(BelleCollaboration), Phys.Rev.Lett. (1978). 92, 101801 (2004). [17] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C [6] A.Abashian et al. (Belle Collaboration), Nucl. Instrum. 48, 543 (1990). and Meth. A 479, 117 (2002). [18] J. E. Gaiser et al., Phys.Rev.D 34, 711 (1986). [7] S.KurokawaandE.Kikutani,Nucl.Instrum.andMeth. [19] S. Eidelman et al.,Phys.Lett. B 592, 1 (2004). A 499, 1 (2003), and other papers in this Volume. [20] A. Limosani and T. Nozaki (Heavy Flavor Averaging [8] R. Brun, F. Bruyant, M. Maire, A. C. McPherson and Group), hep-ex/0407052. P.Zanarini, CERN Report No. DD/EE/84-1 (1984). [21] O. Buchmueller and H. Flaecher (Heavy Flavor Averag- [9] D.J. Lange, Nucl. Instrum.Meth. A 462, 152(2001). ing Group), hep-ph/0507253. [10] P.Ball, arXiv:hep-ph/0306251. [22] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. [11] D.Scora and N.Isgur, Phys. Rev.D 52, 2783 (1995). C 6, 555 (1999); M. Acciarri et al. (L3 Collaboration), [12] F. DeFazio and M. Neubert, JHEP 9906, 017 (1999). Phys. Lett. B 436 174 (1998); P. Abreu et al. (DELPHI [13] QQeventgenerator, developedbyCLEO Collaboration, Collaboration),Phys.Lett.B47814(2000);G.Abbiendi see http://www.lns.cornell.edu/public/CLEO/soft/QQ. et al. (OPAL Collaboration), Eur. Phys. J. C 21, 399 [14] M. Neubert,Phys. Rept.245, 259 (1994). (2001); A.Bornheimet al.(CLEOCollaboration), Phys. [15] B. O. Lange, M. Neubert and G. Paz, hep-ph/0504071 Rev. Lett.88, 231803 (2002) and privatecommunication with M. Neubert. [16] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.