TobesubmittedtotheAstrophysicalJournal PreprinttypesetusingLATEXstyleemulateapjv.01/23/15 DETECTIONOFTHESPLASHBACKRADIUSANDHALOASSEMBLYBIASOFMASSIVEGALAXYCLUSTERS SurhudMore1,HironaoMiyatake2,3,1,MasahiroTakada1,BenediktDiemer4,AndreyV.Kravtsov5,6,7,NealK.Dalal8,1,Anupreeta More1,RyomaMurata1,9,RachelMandelbaum10,EduardoRozo11,EliS.Rykoff12,MasamuneOguri9,13,1,DavidN.Spergel3,1 1KavliInstituteforthePhysicsandMathematicsoftheUniverse(WPI),TokyoInstitutesforAdvancedStudy,TheUniversityofTokyo, 5-1-5Kashiwanoha,Kashiwa-shi,Chiba,277-8583,Japan;[email protected] 2JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109,USA 3DepartmentofAstrophysicalSciences,PrincetonUniversity,PeytonHall,PrincetonNJ08544USA 4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02138USA 5DepartmentofAstronomyandAstrophysics,TheUniversityofChicago,Chicago,IL60637USA 6 6KavliInstituteforCosmologicalPhysics,TheUniversityofChicago,Chicago,IL60637USA 1 7EnricoFermiInstitute,TheUniversityofChicago,Chicago,IL60637USA 0 8DepartmentofPhysics,UniversityofIllinoisUrbana-Champagne,1110WestGreenStreetUrbana,IL61801-3080USA 2 9DepartmentofPhysics,UniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033Japan 10McWilliamsCenterforCosmology,DepartmentofPhysics,CarnegieMellonUniversity,Pittsburgh,PA15213USA n 11DepartmentofPhysics,UniversityofArizona,1118E4thSt,Tucson,AZ85721USA a 12SLACNationalAcceleratorLaboratory,MenloPark,CA94025USA J 13ResearchCenterfortheEarlyUniverse,UniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan 2 2 TobesubmittedtotheAstrophysicalJournal ABSTRACT ] O We show that the projected number density profiles of SDSS photometric galaxies around galaxy clusters C displaysstrongevidenceforthesplashbackradius,asharphaloedgecorrespondingtothelocationofthefirst orbitalapocenterofsatellitegalaxiesaftertheirinfall. Wesplittheclustersintotwosubsampleswithdifferent . h mean projected radial distances of their members, (cid:104)R (cid:105), at fixed richness and redshift, and show that the mem p samplewithsmaller(cid:104)R (cid:105)hasasmallerratioofthesplashbackradiustothetraditionalhaloboundaryR , mem 200m - thanthesubsamplewithlarger(cid:104)R (cid:105),indicativeofdifferentmassaccretionratesforthetwosubsamples. The o mem same cluster samples were recently used by Miyatake et al. to show that their large-scale clustering differs r t despitetheirsimilarweaklensingmasses,demonstratingstrongevidenceforhaloassemblybias. Weexpand s a onthisresultbypresentinga6.6-σdetectionofhaloassemblybiasusingthecluster-photometricgalaxycross- [ correlations. Our measured splashback radii are smaller, while the strength of the assembly bias signal is stronger, than expectations from N-body simulations based on the Λ-dominated, cold dark matter structure 1 formationmodel. Dynamicalfrictionorcluster-findingsystematicssuchasmiscenteringorprojectioneffects v arenotlikelytobethesolesourceofthesediscrepancies. 3 6 0 1. INTRODUCTION assembly bias requires identifying samples of isolated halos 06 Darkmatterhaloswithmasseslargerthan1014h−1M(cid:12) col- whicharematchedintheirhalomassesbutdifferintheiras- semblyhistories. Therehavebeenseveralclaimsofdetection . lapse out of dense peaks in the primordial Gaussian density 1 ofhaloassemblybiasongalaxyscalesintheliterature(e.g., fluctuationsthatarebelievedtooriginatefromquantumfluc- 0 Yangetal.2006;Tinkeretal.2012;Hearinetal.2014).How- tuations in cosmic inflation (see e.g., Kaiser 1984; Bardeen 6 ever,Linetal.(2015)investigatedthefirstoftheseclaimsand et al. 1986, see Kravtsov & Borgani 2012 for a recent re- 1 found no strong evidence for halo assembly bias on galaxy view). Clusters of galaxies form within such massive dark : scales. Thedifferenceintheconclusionswasaresultofcon- v matterhalos. Thelargescaleclusteringamplitudeoftheha- taminationofthehalosamplesbysatellitegalaxies,orthedif- i loshostinggalaxyclustersisthusheavilybiasedcomparedto X ferencesinhalomassesofthesamplesusedtolookforhalo theunderlyingmatterdistribution(Kaiser1984;Mo&White r 1996;Shethetal.2001;Tinkeretal.2010). assemblybias(Linetal.2015). a Recently,Miyatakeetal.(2015)presentedthefirstevidence Althoughthelargescaleclusteringamplitudeofdarkmatter ofhaloassemblybiasonclusterscales. Galaxyclustersoffer halos is primarily expected to depend upon the height of the two advantages: first, the probability of a cluster-sized halo initial density peak out of which a halo collapses (therefore beingasatelliteofanevenbiggerhaloismuchsmallerthan its halo mass), it can have secondary dependencies on other in the case of galaxies, and secondly, the weak gravitational parameters related to the assembly history of the halo, such lensingsignalcanbeusedtomatchgalaxyclustersubsamples as the radial profile of the initial peak, especially on cluster fortheirhalomasseswithagreateraccuracy. scales(Dalaletal.2008). Thedependenceofthelargescale The galaxy cluster subsamples used by Miyatake et al. clustering amplitude on parameters other than the halo mass (2015)weredrawnfromtheSDSSredMaPPergalaxycluster has been broadly referred to as halo assembly bias, and has catalog, and were matched in redshift and richness distribu- been studied in great detail using cosmological simulations tion, but differed in the compactness of the member galaxy (Sheth&Tormen2004;Gaoetal.2005;Gao&White2007; distribution. Thesesampleswereshowntohaveverysimilar Wechsleretal.2006;Lietal.2008). Halo assembly bias has however been difficult to estab- massesbasedonweaklensing,buthaddifferentlargescalebi- ases. Themaingoalofthispaperistoobservationallyestab- lish in astrophysical observations. A clean detection of halo 2 More,S.etal. lish the connection between the member galaxy distribution r to denote three dimensional distances, and R for projected and the mass assembly of these cluster subsamples without distances between galaxies or between galaxies and cluster relying on proxies related to complicated baryonic physics, centers. Forcaseswherewewanttopreservenotationsfrom suchasthestarformationrates. previouspapers, suchasusingR forthesplashbackradius, sp For this purpose, we use a unique probe of the mass as- wewillspecificallymention2dor3dtoavoidconfusion. The sembly of galaxy clusters, which relies on the observational subscript 200m on halo mass M or radius R will refer to the detection of the edges of galaxy clusters. Models of self- mass or radius corresponding to spherical overdensity halos similarsecondaryinfallofmatterontoasphericaloverdensity suchthattheirboundariesenclose200timesthemeanmatter predict the presence of a density jump at the location where densityoftheUniverse. recently accreted material is reaching its first apocenter, as- 2. DATAANDMETHODS sociated with the last density caustic (Fillmore & Goldreich We start from the publicly available catalog of galaxy 1984; Bertschinger 1985). Although the collapse of matter clusters identified from the SDSS DR8 photometric galaxy ontorealisticdensitypeaksincolddarkmattermodelsiscon- catalog by the red-sequence Matched-filter Probabilistic siderablymorecomplexthanthatenvisionedinthesemodels, Percolation(redMaPPer)clusterfindingalgorithm(v5.10,see thelastdensitycausticmanifestsitselfasasharpsteepening the website1 for details and Rykoff et al. 2014; Rozo et al. ofthedensityprofileindarkmatterhalos(Diemer&Kravtsov 2014). Theclusterfinderusestheugrizmagnitudesandtheir 2014). errors,toidentifyoverdensitiesofred-sequencegalaxieswith Thelocationofthisdensitycaustic,alsocalledthesplash- similarcolorsasgalaxyclusters. Foreachcluster,thecatalog backradiusortheturnaroundradius, canbeusedtodefinea containsanopticalrichnessestimateλ,aphotometricredshift physical boundary for dark matter halos (More et al. 2015). estimate z , as well as the position and centering probabili- The splashback radius crucially depends upon the mass ac- λ tiesof5candidatecentralgalaxies p . Aseparatemember cretion rate of the collapsing halo (Vogelsberger et al. 2011; cen galaxy catalog provides a list of members for each cluster, Diemer&Kravtsov2014;Adhikarietal.2014). Forhalosof eachofwhichisassignedamembershipprobability, p . thesamemass,largeaccretionrateresultsinasmallersplash- mem The parent cluster catalog used in Miyatake et al. (2015) back radius. The physical reason is simple: the deeper the consistsofanapproximatelyvolumelimitedsampleof8,648 halopotentialwellgetsduringtheorbitofadarkmatterpar- redMaPPerclusterswith20 < λ < 100and0.1 ≤ z ≤ 0.33. ticle,thesmalleristhevalueofitsapocenter. λ The average and the median redshift of our subsamples are As discussed in More et al. (2015), hints for the splash- 0.24and0.25,respectively. Throughoutthispaperweusethe backradiusmayhavebeenseenbeforeforindividualclusters positionofthemostprobablecentralgalaxyineachclusterre- (Rinesetal.2013;Tully2015;Patej&Loeb2015).Inthispa- gionasaproxyoftheclustercenter.However,wewilldiscuss per,wewillharnessthepowerofstatisticstopresentthefirst theeffectofmiscenteringonourconclusionsinSection4.3. highsignal-to-noisedetectionofthesplashbackradiusforour Inthispaper, wesubdivide thisgalaxyclustersampleinto galaxyclustersubsamples. Wewillusethesplashbackradius toestablishthatthesegalaxyclustersubsampleshavedifferent twosubsamplesfollowingthesameprocedureasinMiyatake massaccretionrates,andhavedifferentlargescaleclustering etal.(2015). Briefly,weobtaintheaverageprojectedcluster- centricseparationofmembergalaxies,(cid:104)R (cid:105),foreachclus- amplitude,asignatureofhaloassemblybias. mem ter,andcomputethemedian(cid:104)R (cid:105)asafunctionofrichness Thepaperisorganizedasfollows: mem andredshift2.Weusethismediantodividetheparentsample • Section 2 describes the cluster subsamples and the into two subsamples. The large- and small-(cid:104)Rmem(cid:105) subsam- Sloan Digital Sky Survey (SDSS) photometric galaxy ples,labelledaslow-andhigh-cgal,respectively,inthispaper, data which form the basis of our study, and the meth- consistof4,235and4,413clusters,respectively. odsweadoptinordertoobtainthemeasurementsofthe Inordertocomputegalaxysurfacenumberdensityaround galaxynumberdensitiesaroundourclustersubsamples. these cluster subsamples, we make use of the photometric galaxy catalog from SDSS DR8 (Aihara et al. 2011). We • Section 3 presents our measurements of the galaxy exclude galaxies with any of the following flags: saturated, numberdensitiesaroundourclustersubsamples,ourin- satur center, bright, deblended as moving. We correct the ferencesforthelocationofthesplashbackradiusfrom magnitudes for galactic dust extinction using the maps of these measurements, and our detection of halo assem- Schlegel et al. (1998), and use all photometric galaxies with blybias. extinction corrected i-band model magnitudes brighter than 21.0andwithmagnitudeerrorslessthan0.1. • Section 4 presents the predictions for the location of We compute the stacked surface number density of the thesplashbackradiusandtheamountofhaloassembly SDSSphotometricgalaxysamplesaroundeachofourcluster bias from numerical simulations in the context of the subsamples as a function of comoving projected separation, standardcosmologicalmodel. Inparticular,wediscuss R, from the galaxy cluster center. Since our cluster subsam- anumberofsystematiceffects, whichcouldaffectour plesspanawiderangeinredshift(0.1≤z≤0.33),thesurface interpretation. densityprofiles aroundlower redshiftclusterswill systemat- ically contribute galaxies from a fainter photometric galaxy • The broad implications of our results are discussed in population. Toavoidsuchbiases,forourfiducialanalysis,we Section5,andconclusionsandasummaryispresented onlycountcluster-galaxypairsifthephotometricgalaxyhas inSection6. an absolute magnitude of M −5logh < −19.433, assuming i Throughoutthispaper, weadoptaflatΛCDMcosmologi- 1http://risa.stanford.edu/redmapper/ cal model with matter density parameter Ωm = 0.27 and the 2 Whilecomputingtheaverage,weweighteachgalaxy’sclustercentric Hubble parameter h = 0.7, unless otherwise stated. We use distancewithitsmembershipprobability(pmem). logtodenotelogarithmswithrespecttobase10. Wewilluse 3 Notethatwedonotuseanyk-correctionsorcorrectionsforluminos- SplashbackradiusandHaloAssemblybias 3 thatitislocatedattheredshiftofthecluster(thislimitcorre- bleenoughtoreproducethegalaxysurfacedensitymeasured sponds to an apparent magnitude of mi = 21 at z = 0.33 for from the SDSS data.5 We chose the maximum projection ourassumedcosmologicalmodel). Additionally,wewillalso length z = 40h−1Mpc as our default value, and we have max presentresultsforphotometricgalaxiesthatareoneandtwo checkedthatthelocationofthesplashbackradiusisinsensi- magnitudesbrighterthanourfiducialmeasurement,toexplore tive to this choice, in particular reducing z to be even as max thedependenceofthesplashbackradiusonthemagnitudeof smallas10h−1Mpc. photometricgalaxiesused. Giventhattheparameterr andρ areentirelydegenerate out o Weexpectthatthesurfacedensitymeasurementwillconsist witheachother,wefixr =1.5h−1Mpc. Wefindthatallow- out of galaxies correlated with the galaxy clusters under consid- ingαtovaryfreelyresultsinanalmostperfectdegeneracybe- erationaswellasuncorrelatedgalaxiesintheforegroundand tweenρ andr ,withverylittleimpactonthelocationofthe s s the background. To determine this uncorrelated component, steepeningofthegalaxydensityprofiles. Thereforeweusea we compute the galaxy surface density around a sample of prioronlogα = log0.2±0.6,centeredatthevalueexpected random points. We use 100 times larger number of random forthedarkmatterhaloscorrespondingtoourmassestimates pointsthanthenumberofclustersinoursubsamples4. These fromweaklensing(Gaoetal.2008). Forourfiducialmodel- random pointsincorporate thesurvey geometry, depth varia- ing scheme, we also use priors on logβ = log4.0±0.2 and tions,anddistributionsofclustersinredshiftandrichness.We logγ=log6.0±0.2centeredaroundthevaluesrecommended subtractthebackgroundaroundrandompointsfromthetotal byDiemer&Kravtsov(2014)andconstraintheparametersr s toobtainthesurfacedensityofcorrelatedgalaxies,Σg(R).We andrttoliewithin[0.1,5.0]h−1Mpc. use102jackkniferegionsinordertocomputethecovariance Forourdefaultmodelingscheme,weassumethatthemost in the measurements of Σg(R) with typical size of 10 × 10 probable central galaxy for every cluster (one with the high- sq.deg. whichcorrespondstoabout100×100(h−1Mpc)2 at est p ), assigned in the redMaPPer catalog, resides at the cen themedianredshiftofourclustersubsamples. Thejackknife true center of gravitational potential in each cluster region. regionsarethussignificantlylargercomparedtothescalesof However,asstudiedinMiyatakeetal.(2015)(seealsoHikage interest in this paper, justifying the assumptions behind the etal.2013),somefractionofthecentralgalaxiesinourcluster jackknifeerrors. subsamplesmaybemis-centered,characterizedbyoffsetradii Usingthemeasurementofthegalaxysurfacedensities,we rangingfrom400h−1kpcpossiblyupto800h−1kpc. Ifsuch would like to infer the location of the splashback radius of mis-centeredclustersareindeedpresentinlargenumbers,our ourclustersubsamples,i.e.,thesteepestlogarithmicslopeof measurementsofthesplashbackradiuswouldbebiasedhigh. the galaxy number density distributions in three dimensions. We will present tests for the effects of mis-centering in Sec- Given that the splashback radius is expected to be of the or- tion4.3below. der of R of our halos, we fit the surface densities in the WewillusetheaffineinvariantMarkovChainMonteCarlo 200m range [0.1, 5.0]h−1Mpc. The location of the steepening in samplerofGoodman&Weare(2010),asimplementedinthe threedimensionsisexpectedtobedifferentfromthatinpro- softwarepackageemcee(Foreman-Mackeyetal.2013),inor- jection (Diemer & Kravtsov 2014). Therefore, we will use der to sample from the posterior distribution of the param- a 3-dimensional parameterization first proposed by Diemer eters, logρ , logr , logα, logr, logγ, logβ, logρ and s , s s t o e &Kravtsov (2014)toforward modeltheprojected measure- giventhegalaxysurfacedensitymeasurementsandthestated ments(seealsoMoreetal.2015).Themodelconsistsofinner priors. andoutersurfacedensityprofileswithasmoothtransitionbe- Asatestofourfittingmethod,inAppendixAweapplyitto tweenthetwo, projectednumberdensitydistributionsof(sub)-halosaround galaxyclustersinnumericalsimulations(seebelowforthede- ρ (r)=ρinnerf +ρouter, g g trans g tailsofthesimulations)andshowthatweareabletorecover (cid:32) 2 (cid:34)(cid:32)r(cid:33)α (cid:35)(cid:33) thelocationofthesteepeningofthethreedimensionaldensity ρignner=ρsexp −α r −1 , distribution of subhalos quite accurately with our modelling s scheme. (cid:32) r (cid:33)−se ρouter=ρ , 3. RESULTS g o r out 3.1. Splashbackingalaxynumberdensityprofiles ftrans=(cid:104)1+(r/rt)β(cid:105)−γ/β, We begin by presenting how the stacked surface density (cid:90) zmax (cid:18)(cid:112) (cid:19) profileofgalaxies,Σg(R),aroundtheentireparentsampleof Σ (R)=2 ρ R2+z2 dz. (1) redMaPPerclusters,describedintheprevioussection,varies g g 0 with galaxy samples of different absolute magnitude thresh- Notethattheabovefittingformula, whichisanEinastopro- olds. These measurements are shown in the top panels of file in the inner regions which transitions to a power law in Figure 1 using points with errorbars. The brightness of the the outer regions, is able to reproduce the dark matter pro- photometric galaxy sample increases from left to right. The file around halos, and is flexible enough to reproduce the solid lines in the bottom panels correspond to the profiles of simulationresultscomparedtootherfittingformulaesuchas the logarithmic slope of the galaxy surface densities. These theNavarro-Frenk-Whitemodelandthehalomodel(Navarro slopeprofileswereobtainedbyusingtheSavitzky-Golayal- etal.1996;Oguri&Hamana2011;Hikageetal.2013). Here gorithm to smooth the observed measurements, by fitting a wesimplyassumethatthesamefittingformulaisalsoflexi- third-order polynomial over a window of five neighbouring points, and then using a cubic spline to interpolate between ityevolutionhere,sincetheredshiftsofthephotometricgalaxiesarequite uncertain. 5Testsusingsubhalodensityprofilesaroundclusterscalehalosfromsimu- 4WehavetestedthattheuseoftheimprovedrandomcatalogfromRykoff lationspresentedinAppendixA,aswellasthereasonablevaluesofχ2values etal.(2016)doesnotchangeanyconclusionsinthispaper. weobtainfordescribingtheobservedmeasurementsjustifythischoice. 4 More,S.etal. 101 Mi-5logh<-19.43 Mi-5logh<-20.43 Mi-5logh<-21.43 2] 101 − pc 101 M 2 100 h [ ) R ( 100 g Σ 100 Vpeak>135kms−1 Vpeak>175kms−1 Vpeak>280kms−1 Observed Observed 10−1 Observed 10−1 100 101 10−1 100 101 10−1 100 101 0.2 − 0.4 − 0.6 R − g 0.8 o − dl 1.0 / − Σg 1.2 − g o 1.4 l − d 1.6 m m m − 00 00 00 1.8 R2 R2 R2 − 2.0 − 10−1 100 101 10−1 100 101 10−1 100 101 R [h−1Mpc] R [h−1Mpc] R [h−1Mpc] Figure1. Toppanels:Thesurfacenumberdensityprofiles,Σg(R),ofSDSSphotometricgalaxieswithdifferentmagnitudethresholdsaroundtheentireredMaP- Perclustersamplewithz∈[0.1,0.33]andrichnessλ∈[20,100],areshownusingsymbolswitherrorbars. Thedashedlinescorrespondto(sub)-halosurface densityprofilesintheMultidarkPlanckIIsimulationaroundclusterswiththemassthresholdsimilartooursampleatz = 0.248. Thethresholdonsubhalo Vpeakvaluesroughlycorrespondtothemagnitudethresholdsineachpanelandwereobtainedbysubhaloabundancematching(seeAppendix B).Bottompanels: Thelogarithmicslopeofthesurfacedensityprofilesareshownusingsolidanddashedlinesfortheobservedgalaxyandthesubhalosurfacedensityprofiles, respectively. Theobservedslopeofthesurfacedensityprofilehasashapewhichissimilartothatexpectedfromsimulations. Notethatalthoughthesurface densityprofilesbothinobservationsandsimulationsexhibitsimilarsteepening,thecorrespondingradiiofthesteepestslopeareatslightlydifferentlocations. Table1 PosteriordistributionofparametersfromtheMCMCanalysis Magnitude cgal logρ0 logα logrs logρo se logrt logβ logγ R2spd R3spd χ2/dof -19.43 high 1.10+0.25 −0.95+0.22 −0.32+0.40 0.349+0.031 1.601+0.076 −0.082+0.049 0.762+0.119 0.66+0.14 0.778+0.015 0.971+0.025 6.0/8 -19.43 low −0.68−+00.7.370 −1.090−+00..30288 0.55+−00.1.113 0.545−+00..003555 1.600−+00..008608 0.058+−00.0.02430 1.10+−00..10295 0.64−+00..1123 1.153−+00..001249 1.378−+00..002216 13.2/8 -20.43 high 0.70+−00.3.210 −0.97+−00..20863 −0.27−+00.1.475 0.167−+00..006174 1.613−+00..008704 −0.098−+00.0.02418 0.82−+00..1113 0.69−+00..1114 0.756−+00..002114 0.938−+00..002264 2.9/8 -20.43 low −0.89−+00.8.368 −1.019−+00..31518 0.48+−00.1.156 0.276−+00..001168 1.655−+00..007572 0.072+−00.0.02368 1.10−+00..1112 0.80−+00..1142 1.128−+00..002192 1.352−+00..002266 12.4/8 -21.43 high 0.10+−00.3.298 −1.00+−00..30386 −0.25−+00.2.419 0.0385−+00..0020145 1.496−+00..005966 −0.087−+00.0.02531 0.85−+00..1114 0.78−+00..1135 0.754−+00..002242 0.938−+00..002356 10.5/8 -21.43 low −1.31−+00.9.435 −0.97−+00..3156 0.40+−00.2.200 0.0712−+00..00004683 1.624−+00..009793 0.087+−00.0.02464 1.12−+00..1124 0.90−+00..1135 1.132−+00..001493 1.361−+00..004304 23.6/8 −0.37 −0.12 −0.25 −0.0066 −0.073 −0.025 −0.13 −0.14 −0.035 −0.038 Note.— Thedifferentrowslistthe68%confidenceintervalsonthemodelparameters(seeEq.1)giventhesurfacenumberdensitydatashowninFigure2. Theχ2perdegreeoffreedomaswellastheinferred2-dand3-dsplashbackradiusarealsoshowninthelastthreecolumns. these smoothed measurements. In contrast with the tradi- observed surface density profiles with those expected from tionalSavitzky-Golayalgorithm,weexplicitlyaccountforthe thestandardstructureformationmodel, weutilizeMultidark covariant errors on these data points, as proposed by More Planck II (MDPL2), a 38403 particle cosmological N-body (2016a)6. simulation with box size of 1h−1Gpc and mass resolution of In Appendix B, we have used subhalo abundance match- 1.51×109h−1M(cid:12)(Klypinetal.2014). Wealsousetheassoci- ing to obtain an estimate of the approximate V (the max- atedhalocatalogsfoundusingRockstar, ahalofinderwhich peak imum circular velocity of a halo throughout its entire his- groups particles into halos using their phase space informa- tory) value of dark matter subhalos7 hosting our photomet- tion(Behroozietal.2013)8. ricgalaxiesasafunctionoftheirmagnitude. Tocomparethe aswell,notjustsatellitehalos. Wewillusethetermhalosexplicitlywhen 6https://github.com/surhudm/savitzky_golay_with_errors referringtoonlyisolatedhalos. 7 Our use of the term subhalos henceforth includes isolated host halos 8 These catalogs are publicly available at the website http://www. SplashbackradiusandHaloAssemblybias 5 102 Low-cgal 0.4 − 0.6 101 − ] R −0.8 2 − g pc dlo −1.0 M 100 / 2h Σg −1.2 [ g g o Σ l 1.4 d − 10−1 1.6 m Mi−5logh<−19.43 − R200 Mi−5logh<−20.43 −1.8 Mi−5logh<−21.43 10−210−1 100 101 −2.0 100 R [h−1 Mpc] R [h−1 Mpc] 102 High-cgal 0.5 − 101 ] R 1.0 2 − − g pc dlo M 100 / 2h Σg 1.5 [ g − m Σg lo 200 d R 10−1 2.0 − 10−210−1 100 101 −2.5 100 R [h−1 Mpc] R [h−1 Mpc] Figure2. Leftpanels: Thesurfacenumberdensityprofiles, Σg(R), ofSDSSphotometricgalaxiesaroundthelow-cgal (top)andhigh-cgal (bottom)cluster subsamples.Thethreedifferentpointtypeswitherrorbarsineachpanelcorrespondtothethreedifferentmagnitudelimitedsamplesofphotometricgalaxieswe use.Rightpanels:ThelogarithmicdensityslopeofthesurfacenumberdensityprofilesobtainedaftersmoothingthedatapointswithanimprovedSavitzky-Golay filter(order3,windowsize5). Thetwo-dimensionalsplashbackradiuscorrespondstothelocationofthesteepestslopeortheminimumofdlogΣg/dlogR. Forcomparison,theshadedregionscorrespondtothetraditionalhaloboundary,R200m,estimatedusingtheposteriordistributionofhalomassesfromtheweak lensingprofileforeachclustersubsamplefromMiyatakeetal.(2015)(bothareconsistentwitheachotherwithintheerrorbars).Notethatthesteepestslope(i.e., theminimumindlogΣg/dlogR)occursatdifferentlocationsforthetwoclustersubsamples. The dashed lines in the top and bottom panels of Fig- splashback radius, is also seen in observations, as expected ure1correspondtotheexpectedsubhalosurfacedensitypro- from subhalo surface density profiles in simulations. How- filesaroundclustersinthecosmologicalsimulationMultidark ever,itisalsoclearthatthelocationswherethesurfaceden- Planck II at z = 0.248. We have selected cluster sized halos sity profiles reach their steepest slopes are different between above a mass threshold of 1014 h−1M , which results in the observations and simulations, especially for the left and the (cid:12) sameaveragehalomassasthatofoursample. Wehavenor- middle panels. This discrepancy between the observed and malizedthesurfacedensityprofilesinthetoppanelstomatch expectedsplashbackradiiisalsoseenfortheclustersubsam- theobservationsat∼ 11h−1Mpc. Therearemarkedsimilar- ples,whichweinvestigateatlengthnext. Wewillextensively ities between the density profiles of subhalos in simulations quantify, comment and explore this discrepancy in the loca- and the galaxies in observations. The surface number den- tionofsplashbackradiusaroundtheseclustersubsamples. sities strongly deviate from a simple power law and show a Thesurfacedensityofphotometricgalaxiesaroundthelow- clearbreakonscalesof∼1h−1Mpcinbothobservationsand and high-c cluster subsamples are shown in the upper and gal simulations. This is most clearly seen in the bottom panels, lower panels of Figure 2 using orange and purple symbols where we see that the profiles reach their steepest slope on with errorbars, respectively. The lighter shades correspond scales of ∼ 1h−1Mpc. This steepening, associated with the to photometric galaxies with brighter magnitude limits. The solid lines in the upper and lower right hand panels of Fig- cosmosim.org 6 More,S.etal. 102 high c gal 0.5 − low c gal 2] R 1.0 − g − pc 101 dlo M / 2[h χ2highc=5.9 gΣg −1.5 Σg χ2lowc=13.1 dlo Degreesoffreedom=8 2.0 − mm 100 0000 22 RR 2.5 100 − 100 R [h−1Mpc] R [h−1Mpc] Figure3. Thesurfacenumberdensityprofiles,Σg(R),ofourfiducialsampleofSDSSphotometricgalaxiesaroundthetwoclustersubsamplesareshownin thelefthandpanel. Theshadedregionsshowthe68and95percentconfidenceregionsofourmodelfittothedata. Therighthandpanelshowstheinferred constraintsonthelogarithmicslopeofΣg(R)forthetwosubsamples. Thesplashbackradiusin2d,R2spd,correspondstothelocationofthesteepestslopeorthe minimumofdlogΣg/dlogR.The68percentconstraintsonR2spdaremarkedwithverticalshadedregions.Theseminimaoccuratsignificantlydifferentlocations forthetwoclustersubsamples.Thetraditionalhaloboundary,R200m,ismarkedbythegreydottedverticalline. very little difference in the location of the steepest slope in 30 projection. high-c 2d high-c 3d gal gal Wefitthegalaxysurfacedensityprofileswiththemodelde- low-c 2d low-c 3d gal gal scribedintheprevioussection.Themedianandthe68percent 25 confidenceintervalsoftheposteriorsofeachoftheseparam- eters,aswellasthebestfitχ2valuesarelistedinTable1.The 20 m numberofdegreesoffreedomforourmodelis8. 00 We show the 68 and 95 percent confidence regions from 2 R the fits to the surface density of the fiducial sample of pho- tometric galaxies around both our cluster subsamples in the 15 left hand panel of Figure 3. The corresponding confidence regions for the logarithmic slope, including marginalization over other model parameters, are shown in the right hand 10 panel. We use the samples from the posterior of the model parameter space to infer the location of the steepest slope of 5 the projected galaxy density profile, R2d, and its uncertainty. sp Thesenumbersarereportedforallofoursubsamplesandfor thedifferentmodelsinTable1aswell. 0 Thelocationofthesplashbackradiuscanbecomparedwith 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 the traditional halo boundary definition, R for each sub- 200m Radius of steepest slope [h−1 Mpc] sample. This is shown by the vertical shaded bands in the rightpanelsofFigure2, asestimatedfromtheposteriordis- Figure4. Theposteriordistributionsforthelocationofthesteepestslopeof tribution of the halo masses for our two subsamples inferred thegalaxydensityprofilesaroundthehigh-andlow-cgalclustersubsamples fromtheweaklensingmeasurementinMiyatakeetal.(2015). areshowninorangeandpurplecoloredhistograms,respectively. Thelight Wenowusethesamplesfromtheposteriordistributionof shadedhistogramscorrespondtothelocationofthesteepestslopesofthe model parameters to infer the constraints on the location of surfacedensityprofiles(2-d),whilethedarkshadedhistogramscorrespond tothelocationofsteepestslopeofthe3-dnumberdensityprofilesinferredby theminimumofthelogarithmicderivativeofthethreedimen- ourfits. Thelocationsofthesteepestslopesforthetwoclustersubsamples sional galaxy density profile, dlogρ /dlogr. The resultant aresignificantlydifferent,implyingadifferentmassaccretionrateontothese g constraints on R3d are reported in the penultimate column of clustersubsamples. sp Table 1. The inferred value of R3d is always larger than the ure 2 show the logarithmic slope of the surface density pro- sp correspondingR2d forallphotometricgalaxysamplesaround filesaroundthetwosubsamples. Theslopesforbothcluster sp subsamplesreachvaluessteeperthan∼−1.6oneithersideof bothclustersubsamples,asshownexplicitlyinFigure4. The ∼1h−1Mpc. Thesurfacedensityofgalaxiesaroundthehigh- verticaldashedlinecorrespondstothetraditionalhalobound- arydefinition,R ,forthetwosubsamples. c cluster subsample reaches its steepest slope at a smaller 200m gal Note that, for our model, a transition function f = 1, radiuscomparedtothelow-c subsample. Thevalueofthe trans gal would correspond to a simple density profile: a sum of steepest slope is considerably larger for the high-c cluster gal Einasto profile which describes well the inner regions and a subsample than the low-c subsample. A comparison be- gal tweentheprofilesofgalaxiesasafunctionofdifferentmag- power law profile for the outer regions. However, the data strongly disfavor such a model, with χ2 values ranging from nitudethresholdsaroundanygivenclustersubsamplesshows SplashbackradiusandHaloAssemblybias 7 2.5 7 1.48 0.07 ± 6 2.0 al 5 g c h higg 1.5 4 6.6−σ Σ / cgal 1.0 3 w loΣg 2 0.5 1 0.0 0 101 0.8 1.0 1.2 1.4 1.6 1.8 2.0 R [h−1Mpc] blow cgal/bhigh cgal Figure5. Detectionofthehaloassemblybias.Leftpanel:Theratioofthesurfacenumberdensityprofilesofourfiducialsamplesofphotometricgalaxiesaround thetwogalaxyclustersubsamples.Theshadedregionscorrespondtothe1-and2-sigmaconfidenceregionsforasingleconstantparameterfittothesedata.Right panel:Theposteriordistributionoftheratiogiventhemeasurementsshownintheleftpanel. Wedetecttheassemblybias–differenceinthehalobiasesofthe twosamples–at6.6σ.Thereisasignificantcovarianceintheerrors,hencethesmallpoint-to-pointvariationgiventheerrors.Thequotedsignificanceaccounts forthecovariance. 3.2. DetectionofHaloAssemblybias MDK 15 Typical Γ The mean number density profile of galaxies correlated 1.4 high-cgal high Γ with clustersat large separationsis proportionalto the prod- uct of the biases of clusters and galaxies in the photometric low-c low Γ gal sample. Wehaveshownabovethattheseprofilesaredifferent 1.2 forthelow-andhigh-cgal clustersubsamples. Giventhatour clustersampleshavethesameredshiftdistribution,thebiasof m photometricgalaxiesshouldcanceloutintheratioofthenum- 0 20 ber density profiles, and we can use the ratio to test whether R 1.0 thetwoclustersubsampleshavedifferentintrinsicclustering / dp biases,asrecentlyreportedbyMiyatakeetal.(2015). 3s R InthelefthandpanelofFigure5,weshowtheratioofthe numberdensityprofilesforourfiducialsampleofphotomet- 0.8 ricgalaxiesaroundthetwosubsamplesofgalaxyclusterson scalesof3−40h−1Mpc. Wefitaconstantratiotothesemea- surementsaccountingforthecovariancedeterminedfromthe 0.6 jackknifetechnique. Thisassumesthatthetwosampleshave similar scale dependence for their bias, and the data support thisassumption. Theposteriordistributionoftheconstantra- 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 tio obtained using this procedure is shown in the right hand Mass accretion rate Γ panelofFigure5. Wefinda6.6σdeviationoftheratioofthe twosurfacedensityprofilesfromunity: 1.48±0.07. Wehave Figure6. ThedependenceofRsp/R200montheaccretionrateΓatz=0.24 thus detected halo assembly bias – the two cluster subsam- predictedbyΛCDM,shownbyagraylinewith5%uncertainty(Moreetal. 2015).Thedarkandfaintshadedpurple(orange)regionsdisplaythe68and ples have the same halo mass based on weak lensing, but a 95percentconfidencelimitsonthesplashbackradiusin3dforourlow-(high- differentlargescalehalobias. Forcomparison,thedifference )cgal sample. Thegray, orangeandpurplestarscorrespondtothetypical in the bias ratio that was obtained in Miyatake et al. (2015) splashbackradiiforatypicalaccretionrate,aswellasslowandfastaccreting usingtheweaklensingsignalwas1.64+0.31,andthatfromthe clustersfromnumericalsimulations(seetextfordetails). Theobservedval- −0.26 uesofthesplashbackradiiaresignificantlysmallerfromthepredictedvalues auto-correlationfunctionofgalaxyclusters was1.40±0.09. theirhalomasses,evenifweconsiderhaloswithtypicalaccretionrates. The three different measurements give results which are sta- tisticallyconsistentwitheachother. 60to140for9degreesoffreedomdependingupontheclus- tersubsampleandthephotometricgalaxiesunderconsidera- 4. COMPARISONSWITHEXPECTATIONSFROMΛCDMMODEL tion9.Therefore,ourmeasurementsimplyasteepeningofthe numberdensityprofileofgalaxiesaroundbothofourcluster Usingtheprojectedgalaxynumberdensityprofilesaround subsamplesbeyondthatpredictedbytheEinastoprofile. two cluster subsamples from the redMaPPer catalog, we haveshownthatthesetwosubsampleshavedifferentprofiles, splashback radii, as well as a different clustering bias. We 9Thereisonly1additionaldegreeoffreedomforthesemodels,aswelose now compare these measurements to the predictions of the tohnelyfidounclyiaolnmeofdreeleinpgarsacmheemteerarnt,dththeuostdhoernpoatrcahmaentgeersthγeadnedgrβeehsaovfefprerieodrosmin. concordancecosmologicalΛCDMmodel. 8 More,S.etal. Γ=[1.0,1.5] Γ=[1.5,2.2] Γ=[2.2,5.0] 1 − r g 2 o − l d / g 3 135 km/s ρ − g 175 km/s o dl 4 280 km/s − Matter Miscentered 5 − 100 100 100 r/r r/r r/r 200m 200m 200m Figure7. ComparisonbetweenthelogarithmicslopeofthedensityprofileformatterandthatofsubhalosselectedusingdifferentVpeakthresholdsasindicated inthelegend.Differentpanelscorrespondtohaloswithdifferentmassaccretionrates,Γ.Thearrowsindicatethelocationofthesteepestslope,orthesplashback radiiforthecorrespondingpopulation,withthelongestarrowusedtorepresentdarkmatter. Thegreyverticalbandscorrespondstothefittingfunctionfor Rsp/R200msimilartotheonebyMoreetal.(2015),butforthemeanprofiles,andincludesanuncertaintyof±5%. 4.1. Isthesplashbackradiusforthetwosubsamplesatthe cretion rates (see above). The data seem to prefer a much expectedlocation? smallersplashbackradiusforeachofourclustersubsamples Usingtheweaklensinginferredmassesforourclustersub- (R3spd/R200m = 0.675+−00..002241 and0.955±0.035forthehigh-and samples,wecancomputethebaselineexpectationforthelo- the low-cgal subsamples, respectively), even when compared cation of the splashback radius in the standard cosmologi- tothesplashbackradiuscorrespondingtohaloswithtypicalΓ cal model. The ratio R3d/R is expected to depend upon forourmassscales. sp 200m the accretion rate of the halos as well as redshift (Diemer 4.2. Doesdynamicalfrictionresultinasmallersplashback & Kravtsov 2014; Adhikari et al. 2014; More et al. 2015). radius? To compute the mean accretion rate on to halos, we use halos from MDPL2 at z = 0.248, closest to the median So far in our analysis, we have identified the splashback redshift of our redMaPPer subsamples and select all halos radius using the galaxy distribution around our cluster sub- above a certain halo mass threshold10. We choose the halo samples. The splashback radius of galaxies could be differ- mass threshold such that the average halo mass of the sam- entfromthatofdarkmatterduetodynamicalfrictionacting ple is consistent with the M of the redMaPPer subsam- on the subhalos that host our galaxies, provided these sub- 200m ples obtained by Miyatake et al. (2015). As a best case ex- halos are sufficiently massive (Adhikari & Dalal 2016). In pectation, we divide the halo sample into two based on the whatfollows,weshowthatthesteepeningofthethreedimen- dependence of the halo mass accretion rate on halo mass, sionaldensityprofilesforbothmatterandsubhalosthathost Γ(M ) = ∆logM /∆loga. The derivative for Γ is com- our fiducial photometric sample of galaxies are expected to 200m vir putedusingafinitedifferenceschemeusingthevirialmasses occuratsimilarlocations. atredshift0.248and0.748(Diemer&Kravtsov2014;More Forthispurpose,weagainmakeuseofthehaloandsubhalo etal.2015)11. catalogsfromtheMDPL2simulation. Wematchthecumula- InFigure6,wecomparethelocationofthesplashbackra- tiveabundancesofdarkmattersubhalosasafunctionofV peak dius with respect to R observed for our cluster subsam- (the maximum circular velocity of a halo throughout its en- 200m ples,tothebestcaseexpectationsimpliedbytheseaccretion tirehistory)andthatofourphotometricgalaxiesasafunction rates. Thegreybandcorrespondstothefittingfunction oftheirmagnitude, toobtainanestimateoftheV ofsub- peak halos hosting our galaxies (see Appendix B). The subhalos R3d (cid:32) (cid:34) Γ (cid:35)(cid:33) sp =0.58[1+0.63Ω (z)] 1+1.08exp − (2) that host our fiducial subsample of photometric galaxies ap- R200m m 2.26 proximatelycorrespondtosubhaloswithVpeak >135kms−1, while the brighter subsamples correspond to subhalos with with a 5 percent uncertainty. This fitting function is a good V >175kms−1andV >280kms−1,respectively. fittothesplashbackradiiofdarkmatterhalosinsimulations pFeaokrthisanalysis,weuspeeakthez = 0particlesnapshotofthe used in More et al. (2015)12, but corresponds to the mean simulation13.Weuseallhalosidentifiedbythe6dphasespace profiles instead of the median. The grey star corresponds halo finder ROCKSTAR (Behroozi et al. 2013) in the z = 0 to the typical expected value of Γ for halos in the sample, snapshot with halo mass, M , above 8.5×1013 h−1M as estimated from the simulations, while the orange and pur- 200m (cid:12) oursampleofgalaxyclusters. Wesubdividetheseinbinsof ple stars similarly correspond to the average Γ for the best- Γ = ∆logM /∆loga, and compute the three-dimensional case simulation subsamples with the fastest and slowest ac- density profilveirof matter around them. The derivative for Γ forthisparticularsnapshotwascomputedbetweenz = 0and ber1s0fUorsitnhgeeaxcpoescmteodlomgaicsaslascicmreutliaotniornatwesit.hΩm=0.27,wegetsimilarnum- z=0.5(Diemer&Kravtsov2014;Moreetal.2015).Thelog- 11ThereisverylittledifferenceintheaveragevalueofΓifweuseahalo masssamplewithathresholdonNsat 13Ideallywewouldhavelikedtoalsocarryoutthisexercisenearz=0.24, 12Thefittingfunctionwascalibratedintheredshiftrange[0,4]. butwehadonlythez=0particlesnapshotavailable. SplashbackradiusandHaloAssemblybias 9 arithmicslopeofthematterdensityprofilearoundthecluster second, thecentralgalaxymaybephysicallydisplacedfrom samples are shown in the different panels of Figure 7 using thepotentialminimumoftheclusteraroundwhichallgalax- a black solid line. For reference we also show the expected iesorbit.Totestforthefirstkindofmis-centering,wehavere- locationsofthesplashbackradiusforeachofthesubsamples, strictedourmodelfitstoscales>400h−1kpcortousingclus- using Equation 2. The fitting function seems to capture the ters where the most probable central galaxy has p > 0.9. cen trend observed for the splashback radius of dark matter as Theserestrictionsproducefitparametersconsistentwiththose a function of the accretion rate in the simulation reasonably listedinTable1,especiallythepositionofthesplashbackra- well(within5percent). dius,withinthereporteduncertainties. Inthesamefigureswealsoshowthelogarithmicslopesof To test for the second kind of mis-centering, we have also subhalodistributionsaroundgalaxyclusterhalosfordifferent considered all halos from the MDLP2 simulation used in V thresholdsobtainedfromoursimplesubhaloabundance the previous section, and displaced 40 percent of these ha- peak matchingmethod. Weobservethatthelocationsofthesteep- los in their positions with an offset drawn from a multivari- estslopeforsubhaloswiththelowestV thresholdissim- ate Gaussian distribution with standard deviation equal to peak ilar to that in dark matter within 5 percent for all the Γ bins 400h−1kpc14. In each panel of Figure 7, we have addition- shown in the figure. Thus the location of the splashback ra- allyincludedadashedlinewhichshowstheslopeofthelog- diusisnotexpectedtobesignificantlydifferentforsubhalos arithmic density profiles around such a sample of halos. We hosting our fiducial sample of photometric galaxies. As we findthat,asexpected,inallcasesthesplashbackradiuswould consider V thresholds corresponding to our brighter sub- be overestimated by (cid:38) 20%, an effect which goes in the op- peak samples, we see effects of dynamical friction acting on the posite direction required to explain a smaller splashback ra- subhalos(seealsoJiang&vandenBosch2014). Thesplash- dius. Moreover, the change of slope around the splashback back radius of these larger subhalos systematically shifts to radiusismuchlesspronouncedandoverallshapeofthepro- smallervalueswithincreasingV threshold. fileissignificantlymodified. Thisisincontrastwiththegood peak Wehavetriedtomaximisetheeffectofdynamicalfriction agreement we find between the shapes of the predicted and in the above exercise by not considering scatter between the observedslopeprofiles. luminosity of galaxies and the V of their subhalos while peak performingabundancematching. Wedonotseealargeshift 4.4. Couldaveragingeffectsresultinasmallersplashback in the splashback radius of the photometric galaxies around radius? any of our cluster subsamples as a function of their magni- We have used the average halo mass of our subsamples tude threshold. However, this does not imply that our data as inferred from weak lensing to obtain the average R rule out dynamical friction acting on the brighter sample of 200m of our cluster halos to compare with the observed values of photometricgalaxies. Itisquitelikelythatthereisareason- thesplashbackradius,R3d. Couldthedifferencebetweenthe ablylargescatterbetweenthemagnitudeandVpeak,whichcan sp washoutthedynamicalfrictioneffect. R3spd/R200mseeninobservationsandthatpredictedfromsimu- lationsariseduetothefinitewidthofthehalomassdistribu- 4.3. Backgroundsubtractionandmis-centeringuncertainties tion? Weconsideredthedistributionofhalomassesresulting We have used the number density profiles around random fromathresholdsamplewiththesameaveragehalomassas pointstosubtracttheuncorrelatedgalaxiesinthebackground our cluster subsamples. For such samples, we find that the and the foreground of our subsamples. We have also tested difference between (cid:104)R (cid:105) and that inferred from the aver- 200m how residual uncertaintiesin background subtraction can af- age halo mass is different by only ≈ 3 percent, whereas the fectourresults. Asaninitialtestofuncertaintiesintheback- discrepancyweobserveismuchlarger15. ground which are constant with radius, we have added in a Wehavealsoverifiedthatthelocationofthesplashbackra- constant parameter to our model for the projected number diusforathresholdmasssampledoesnotresultinasmaller densityprofiles. Evenaftermarginalizingoversuchaparam- inferredsplashbackradiuscomparedtotheexpectationbased eter, we obtain values for the splashback radii and its uncer- on using the average halo mass, and the average mass ac- tainty which are very consistent in two dimensions, and vir- cretion rate onto the halo samples. These tests confirm that tuallyidenticalinthreedimensions. However,therecouldbe thesmallervalueforthesplashbackradiusweobserveisnot additionalbackgrounduncertaintieswhichvarywiththepro- likelytobearesultofsomeaveragingeffects. jecteddistance. For example, we expect that the clusters in our subsam- 4.5. Whatisthesystematicerrorintheweaklensinghalo ples will cause the galaxies in the background to be magni- masses? fied(seee.g.,Umetsuetal.2011). Weexplorethechangesto Our conclusion that the observed splashback radius is the background due to cluster magnification in Appendix D, and find that the splashback radius is not affected even after smallerthantheexpectationfromsimulationsisbasedonthe comparisonwiththevirialradiusforweaklensinghalomass applying a conservative correction to the background due to inferredbyMiyatakeetal.(2015). However,Miyatakeetal. themagnificationoftheclusters. Theskysubtractionaround bright or highly clustered objects can also potentially affect (2015) assumed a δ-function distribution in halo masses to model the weak lensing measurements for each cluster sub- thephotometryofgalaxiesandhencethebackgroundobjects sample and infer the average halo mass. Such a simplified in clusters (Aihara et al. 2011). This can also partly cancel the magnification effect, as it reduces the number density of backgroundgalaxiesinclusters. 14 This assumes that the redMaPPer centering probabilities are unreli- ableandthecenteringalgorithmperformsasbadlyasselectingthebrightest Mis-centering of central galaxies in redMaPPer clusters galaxyinthecluster,whichcouldresultin40percentmis-centeringfraction could affect the profiles and our estimates of the splashback (Skibbaetal.2011). radius. There are two kinds of mis-centering: first, a galaxy 15UsingahalomasssamplewithathresholdinNsatasinourdata,also may be mis-classified as a central by the cluster finder and doesnotaffectthisconclusion. 10 More,S.etal. 101 c] Mp 100 1 − h m [ cd i m 3dme R h 1014 1015 1014 1015 M [h 1M ] M [h 1M ] 200m − 200m − (cid:12) (cid:12) 2.0 0.5 Autocorrelation low-cgal 1.8 high-cgal Cross-correlation 0.4 1.6 Observed highb]cgal 1.4 Γ) 0.3 lowb/cgal 1.2 P( 0.2 [ 1.0 0.8 M200m>1.0×1014M(cid:12)/h 0.1 DivisionbasedonhRm3demi(M200m) 0.6 0.0 101 0 1 2 3 4 5 6 r [h 1 Mpc] Mass accretion rate Γ − Figure8. Expectationforhaloassemblybiasfromsimulations.Topleftpanel:Theaverageclustercentricdistanceofmembersubhalosinclustersizedhalosin MDPL2simulationasafunctionofhalomass.Weusetheradiustodividetheclustersampleintotwoatfixedmass.Thetwosubsamplesareshowninorangeand purplecolors.Toprightpanel:Thesamesubsamplesasinthetopleftpanelbutinthedarkmatterconcentration-halomassplane.Thesubhalodistributionseems tohaveverylittlecorrelationwiththedarkmatterdistribution. Bott(cid:68)omlef(cid:69)tpanel:Theratioofthehalobiasesofsubsamplesofhaloswithmasses1014h−1M(cid:12) splitusingtheaveragedistanceoftheirsubhalosfromtheircenters, R3mdem (M200m).Thebiasratioobtainedfromcluster-clusterauto-correlationsisshownwith asolidline,whilethedashedlinecorrespondstotheratioobtainedfromthecross-correlationsofcluster-scalehaloswithallsubhaloswithVpeak >135kms−1 thatareselectedtomimicthefidualphotometricgalaxiesusedinouranalysisasinFigure1.Bottomrightpanel:ThedistributionofthemassaccretionratesΓ forthetwosubsamples. fittingtotheweaklensingsurfacemassdensityprofileisex- halobias. Isthesenseandtheamplitudeofthehaloassembly pectedtounderestimatethevirialhalomassby∼ 10%com- bias signal we see consistent with expectations from cosmo- paredtothemeanhalomassofclustersinthesample(Man- logicalsimulationsofcolddarkmatter? delbaumetal.2005;Becker&Kravtsov2011;Niikuraetal. Various proxies such as formation time scales of halos or 2015), or ∼ 3% in radius. The difference between the mea- theirdarkmatterconcentrationshavebeenusedinthelitera- suredandexpectedsplashbackradiiismuchlargerthansuch turetoquantifyhaloassemblybias. Thesenseofthehaloas- systematic error, and if at all will increase the inconsistency semblybiaseffectvariesdependingupontheassemblyproxy ratherthandecreaseit. Thestatisticalerrorintheweaklens- used. For example, Gao et al. (2005) find that halo assem- ing masses is less 10 percent, so even 2-σ deviations will blybiasisstrongestforlowmassgalaxyscalehalos,andthat result in only ∼ 7 percent change in the expectation in the the earliest forming halos cluster more strongly than the av- splashbackradius.Theerrorsintheweaklensingmasseshave erage for their halo masses. However, they find that the ef- alsobeenfoldedinwhencomputingtheerrorontheobserved fectalmostdisappearsonthemassscalesweconsiderinour R /R showninFigure6. paper. On the contrary, when the concentration of halos is sp 200m used as a proxy, halo assembly bias manifests itself at both 4.6. Isthehaloassemblybiassignalconsistentwith galaxyscalesandgalaxyclusterscales(Wechsleretal.2006). expectations? Atgalaxyscales(massesbelow1012h−1M )highconcentra- (cid:12) Our observational results indicate that the galaxy cluster tionhalos(whichformearlier)havealargerhalobias,butthe subsamplewithlowerconcentrationofmembergalaxieshasa trend reverses on galaxy cluster scales, as expected from the largersplashbackradius(loweraccretionrateΓ),andalarger