ebook img

Detection of non-ordered central gas motions in a sample of four low surface brightness galaxies PDF

0.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detection of non-ordered central gas motions in a sample of four low surface brightness galaxies

Astronomy&Astrophysicsmanuscriptno.ms6580 (cid:13)c ESO2008 February2,2008 Detection of non-ordered central gas motions in a sample of four ⋆ ⋆⋆ low surface brightness galaxies (ResearchNote) A.Pizzella1,D.Tamburro2,E.M.Corsini1,3,andF.Bertola1 8 0 1 DipartimentodiAstronomia,Universita`diPadova,vicolodell’Osservatorio3,I-35122Padova,Italy 0 2 Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,D-69117Heidelberg,Germany 2 3 ScuolaGalileianadiStudiSuperiori,viaVIIIFebbraio2,35122Padova,Italy n AcceptedJanuary14,2008 a J ABSTRACT 5 1 Aims.Wepresentintegral-fieldspectroscopyoftheionizedgasinthecentralregionsoffourgalaxieswithalowsurfacebrightnessdisk takenwiththeVisibleMultiObjectSpectrographattheVeryLargeTelescopeandaimedattestingtheaccuracyinthedetermination ] ofthecentrallogarithmicslopeαofthemassdensityradialprofileρ(r)∝rαinthisclassofobjects. h Methods.Forallthesamplegalaxieswesubtractedfromtheobservedvelocityfieldthebest-fitmodelofgasincircularmotionsand p derived the residuals. Only ESO-LV5340200 ischaracterized by aregular velocity field.Weextracted the velocity curves of this - o galaxyalongseveralpositionangles,inordertoestimatetheuncertaintyinderivingthecentralgradientofthetotalmassdensityfrom r long-slitspectroscopy. t Results.Wereportthedetectionofstrongnon-orderedmotionsoftheionizedgasinthreeoutoffoursamplegalaxies.Thedeviations s a havevelocityamplitudesandspatialscalesthatmakenotpossibletodisentanglebetweencuspyandcoredensityradialprofiles. [ Keywords.galaxies:kinematicsanddynamics–galaxies:spiral–galaxies:structure 1 v 2 1. Introduction 2003)datawiththeCDMpredictions.Despitethisobservational 4 effort, a unique answer to the centralDM density profile slope 3 Lowsurfacebrightness(LSB)galaxiesaredefinedasdiskgalax- hasnotbeenfound. 2 ies with a central face-on brightness fainter than 22.6 B−mag 1. arcsec−2. In comparison with high surface brightness (HSB) However,measuring the mass density profile using the gas aspotentialtraceringalacticcentersmayresultproblematicnot 0 galaxies, the LSB galaxies have higher mass-to-light ratios onlybecauseofthe resolutioneffects.Indeed,thegascanhave 8 and are dominated by the dark matter (DM) even in the cen- an intrinsic velocity dispersion and does not necessarily move 0 tral regions (e.g., deBloketal. 1996; Courteau&Rix 1999; on perfectly ballistic orbits (Bertolaetal. 1995; Cinzanoetal. : Borriello&Salucci2001).Therefore,therotationcurvesofLSB v 1999). Moreover, the emissivity distribution of the gas is of- Xi gpareladxicietisonarseotfhNou−gbhotdtyosriempurelasteinotnasninidaecaolldtedsta-rbkedmtaottecrh(eCckDMthe) ten clumpy (vandenBosch&Swaters 2001) and the presence of asymmetric and/or decoupled structures could remain un- r universe, where the mass density radial profile of the DM ha- a los is described by a steep power law ρ(r) ∼ rα (i.e. α . detected in long-slit observations(see Coccatoetal. 2005, and references therein). More mundanely, the imperfect centering −1,Navarroetal.1997,2004;Mooreetal.1999;Diemandetal. andorientationoftheslitin opticalspectroscopyandthe beam 2005). smearinginradioobservationscontributetothetotaluncertain- On the other hand, the observations seem to be inconsis- tiesonthemeasuredkinematics. tentwiththeCDMscenario.TheDMmassdensitydistribution To address all these issues, it is crucial to obtain high- derived by H I rotation curves of most of LSB galaxies is de- resolutiongaskinematicsalongdifferentaxes.Onlyrecently,the scribedbya radialprofilewith a constantcoreprofile(i.e.α ≃ two-dimensionalvelocityfieldoftheionizedgasinLSBgalax- 0, McGaugh&deBlok 1998; Salucci 2001). This is true also ies has been measured by means of integral-field units spec- for the ionized-gas rotation curves (see McGaughetal. 2001; troscopy.Simonetal.(2005)studiedasampleoflowmassspiral deBloketal. 2001; McGaughetal. 2003). The spatial resolu- galaxieswith a velocity field which can be explainedby either tion of these data allows to detect cuspy DM density profiles a cored or a cuspy density radial profile. KuziodeNarayetal. whentheyarepresent.But,otherauthorsdofindanagreementof (2006)observedasampleofLSBgalaxies.TheyfoundthatDM theradio(vandenBoschetal.2000)andoptical(Swatersetal. haloswithacoreofconstantmassdensityprovideabetterfitto thedatawithrespecttothosewithadensitycusp. Sendoffprintrequeststo:[email protected] ⋆ Based on observations carried out at the European Southern In this paper we focus on the intrinsic limitation of the Observatory(ESO71.B-3050) ionized-gas kinematics in tracing the galactic central potential ⋆⋆ Table 2 is only available in electronic form at the CDS and mass distribution. The work is based on the kinematics in via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via thecenteroffourgalaxieswithaLSBdiskmeasuredbyintegral- http://cdsweb.u-strasbg.fr/Abstract.html field spectroscopy.Theobservationsanddata reductionarede- 2 Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) scribed in Sect. 2. The measurement and analysis of the kine- 3. Analysis maticsanddistributionoftheionizedgasarediscussedinSect. Theionized-gaskinematicswasmeasuredbyfittingthebright- 3. The results are given in Sect. 4. Finally, the conclusionsare estemissionlinesin thegalaxyspectra.TheyweretheHα and presentedinSect.5. [NII]λ6583linesforESO-LV1860550andESO-LV4000370, Hαand[SII]λ6716linesforESO-LV3520470,andHαlinefor ESO-LV 5340200.A Gaussian profile and a straight line were 2. Observationsanddatareduction fitted toeach emissionline andits adjacentcontinuum,respec- tively.Thelineswereassumedtoshareacommoncentroidve- The sample galaxies were selected among those observed by locity and a common velocity width. The heliocentric correc- McGaughetal.(2001)andPizzellaetal.(2008a)tohaveaLSB tionwasappliedtothefittedline-of-sightvelocities.Theywere disk and measured ionized-gas kinematics with long-slit spec- notcorrectedforthe galaxyinclination.The fitted line-of-sight troscopy.TheirmainpropertiesarereportedinFig.1. velocity dispersions were corrected for the instrumental veloc- The integral-field spectroscopic observations were carried itydispersion.Nofluxcalibrationwasperformed.Theresulting out with the Very Large Telescope (VLT) at the European kinematics of the ionized gas as well as the intensity maps of Southern Observatory (ESO) in Paranal (Chile) in 2003. The thestellarcontinuumandfittedemissionlinesareplottedinFig. UnitTelescope3mountedtheVisibleMultiObjectSpectrograph 1.Theresultingline-of-sightheliocentricvelocitiesandvelocity (VIMOS) in the Integral Field Unit (IFU) configuration. The dispersionsarelistedinTab.2. fieldofviewofthefourVIMOSchannels(Q1-Q4)was13′′×13′′ McGaughetal. (2001) measured the gas kinematics along and it was projected onto a microlenses array. This was cou- themajoraxisofESO-LV3520470.Pizzellaetal.(2008a)mea- pled to optical fibers which were rearranged on a linear set of sured the gas kinematics along several axes of the remaining microlenses to produce an entrance pseudoslit to the spectro- threegalaxies.Acomparisonwiththesedatasetswasperformed graph. The pseudoslit generated a total of 1600 spectra cover- to assess the accuracyandreliability of our measurements.We ingthe fieldof viewwith a spatialresolutionof0′.′33perfiber. extractedfromourtwo-dimensionalvelocityfieldsthe velocity EachchannelwasequippedwiththeHR orangehighresolution curvesalongthesameaxesobservedbyMcGaughetal.(2001) (R ∼ 2500) grism and a thinned and back illuminated EEV44 and Pizzellaetal. (2008a) mimicking their instrumental setup. CCDwith2048×4096pixelsof15×15µm2.Thewavelength For all the galaxieswe foundan agreementwith the errorsbe- rangebetween5250and7450Åwascoveredwithareciprocal tween the velocity curves extracted from the two-dimensional dispersion is 0.65 Å pixel−1. The observing log and values of velocity fields and the long-slit measurements. The best match thefullwidthathalfmaximumoftheseeingasmeasuredbythe wasfoundforthemajor-axisrotationcurveofESO-LV5340200 ESODifferentialImageMeteoMonitorarereportedinTable1. (Fig.2).Thelargestdeviations(∆v≃40kms−1)wereobserved alongadiagonalaxis(PA =165◦)ofESO-LV1860550(Fig.2) andtheycanbeattributedtothedifferentpointspreadfunctions Table1.Observinglog andspatialsamplingsofthetwodatasets. Foreachgalaxy,wefittedtheobservedvelocityfieldwiththe Name Date Exp.Time FWHM modelof a thin disk of rotating gas to investigate the presence of non-circular and non-orderedmotions. They limit the accu- ESO-LV1860550 07/08Apr2003 2×45min 0′.′4/0′.′6 racyofthemassdensitydistributionderivedfromtheavailable ESO-LV3520470 31Jul2003 1×45min N/A ESO-LV4000370 24Aug2003 1×45min 0′.′5 kinematics.Themodelofthegasvelocityfieldisgeneratedas- ESO-LV5340200 28/29Jun2003 2×45min 0′.′7/0′.′6 sumingthattheionized-gascomponentismovingontocircular orbits in an infinitesimally thin disk with a negligible velocity dispersion.We assumethatthecircularvelocityv atagiven disk radiusrofthegaseousdiskis For each VIMOSchannelall the spectra were traced, iden- tified, bias subtracted, flatfield corrected, corrected for relative 1 fiber transmission, and wavelength calibrated using the rou- v (r)=v 1− harctan r 2 , (1) disk ∞ tines of the VIPGI pipeline (Scodeggioetal. 2005). The cos- " r h# mic rays and bad pixels were identified and cleaned using our wherev andharetheasymptoticvelocityandascaleradius,re- routines developed under the IDL environment1. We checked ∞ spectively.FollowingCoccatoetal. (2007),the ionized-gasve- andcorrectedthewavelengthrebinningbymeasuringthediffer- locitymeasuredalongthelineofsightatagivenskypoint(x,y) encebetweenthemeasuredandpredictedwavelengthforthe23 is brightestnight-skyemissionlinesintheobservedspectralrange (Osterbrocketal.1996).Thermsofthedifferenceswas0.08Å v (x,y)=v (r)sinicosφ+v , (2) los disk sys (Q1),0.05Å (Q2),0.05Å (Q3),and0.07Å (Q4),correspond- ingtoanaccuracyinwavelengthcalibrationof3km s−1 inthe wherevsysisthesystemicvelocityofthegalaxy.Theanomalyφ observedspectralrange.Theintensityofthenight-skyemission ismeasuredonthediskplaneanditisdefinedby lineswasusedtocorrectforthedifferentrelativetransmissionof cosφ= (x−x )cosθ+(y−y )sinθ /R, (3) theVIMOSchannels.Thewidthofthenight-skyemissionlines 0 0 wasusedto estimatethe instrumentallinewidth.We measured where(x(cid:2),y ),i,andθarethecoordin(cid:3)atesofthecenter,inclina- 0 0 FWHM = 1.86±0.19Å(Q1),1.81±0.19Å(Q2),1.88±0.14 tion,andpositionangleofthelineofnodesofthegaseousdisk, Å(Q3),and1.84±0.14Å(Q4),correspondingtoainstrumental respectively.Theparametersofourmodelaretheasymptoticve- velocitydispersionσinst =36kms−1. locity, velocity scale radius, and position angle of the gaseous disk, and the systemic velocity of the galaxy. The disk incli- 1 TheInteractiveDataLanguage isaproduct ofResearchSystems, nation was not fitted because the field of view was too small Inc.(RSI) to properly constrain it. We adopted the inclination given by Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) 3 Fig.1.Mapsofthedistributionandkinematicsoftheionizedgasforthesamplegalaxies.EastisupandNorthisright.Theranges areindicatedattherightofeachpanel.Upperpanel:reconstructedimageofthegalaxyobtainedbyintegratingthestellarcontinuum between5728and5758Å.Middleleftpanel:Hαintensitymap.Middlerigthpanel:[NII]λ6583(or[SII]λ6716)intensitymap. Lowerleftpanel:heliocentricline-of-sightvelocitywithoutapplyinganycorrectionforgalaxyinclination.Lowerrightpanel:line- of-sightvelocitydispersioncorrectedforinstrumentalvelocitydispersion.Themorphologicalclassification,inclination,major-axis positionangle,diameterofthe25 B−magarcsec−2 isophote,andtotalbluemagnitudearetakenfromLauberts&Valentijn(1989, ESO-LV).Thesystemicvelocitiesarefromthispaper.ThedistancesarederivedfromthesystemicvelocitiescorrectedtotheCMB referenceframefollowingFixsenetal.(1996)andassumingH =75kms−1 Mpc−1. 0 4 Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) dropsto0.7andthedistributionoftheionizedgasbecomesmore patchy with the emission regionsaligned in a sort a spiral arm structure.Wearguedthatthesefeaturesareduetogasexhaustion bymassivestellarformationandtoshocksinducedbyradiation andwinds,asfoundinthecenterofNGC7331byBattaneretal. (2003). Thevelocityfieldexhibitstheoverallshapeofarotatingdisk (Fig. 1). However,there are signaturesof non-orderedmotions in the inner few arcsec. Theyare clearly visible in the residual map(Fig.3)obtainedbysubtractingthecircularvelocitymodel from the observed velocity field. In particular, there is a struc- Fig.2.Therotationcurvesmeasuredinthispaper(crosses)along ture receding with v ≃ 120 km s−1, which is characterized by the major-axis of ESO-LV 5340200 (left panel) and a diago- the highestvelocitydispersion measuredin the frame (σ ≃ 80 nalaxisofESO-LV1860550(rightpanel)comparedwiththose km s−1). It is located in the southeastern quadrant of the field obtained from long-slit spectra by Pizzellaetal. (2008a, dia- ofviewatabout3′′fromthegalacticcenter.Inthesameregion, monds). wemeasuredanarrow(σ≃50kms−1)Hαabsorptionline.Itis likelythatitisduetoa(relativelycold)hydrogencloud,whichis locatedbetweentheobserverandthegalaxyandfallingtowards the ESO-LV catalog (Fig. 1). The center of the gaseous disk thegalacticcenter.Thisregionwasmaskedincalculatingthecir- was assumed to be coincident with the position of the inten- cular velocitymodel to minimize systematic errors. Except for sitypeakofthestellarcontinuumofthereconstructedimagefor such a remarkable feature, the velocity dispersion field is reg- ESO-LV 1860550and ESO-LV 5340200(Fig. 1). No intensity ular and symmetric. The velocity dispersion peaks at about 60 peakwasobservedforESO-LV3520470andESO-LV4000370. kms−1inverycenterandthenitdecreasesoutwards.Theasym- Therefore,forthesegalaxies x andy wereleftasfreeparam- 0 0 metryand irregularityof the observedvelocityfield, whichare eters. The best-fitting parameters were obtained by iteratively possibly due to an ongoing acquisition event, prevented us to fitting a model velocity field to the observed one using a non- derivetheradialprofileofthemassdensity. linearleast-squaresminimizationmethod.Itisbasedonthero- bust Levenberg-Marquardtmethodimplementedby More´etal. (1980).TheactualcomputationwasdoneusingtheMPFITalgo- 4.2.ESO-LV3520470 rithmundertheIDLenvironment.Theseeingeffectsweretaken into account by convolving the model with a Gaussian kernel The field of view covers3.2×3.2 kpc2 at the galaxy distance. with a FWHM as givenin Tab.1. Finally,the modelwas com- We excludedthe [N II]λ6583line in measuringthe kinematics paredtotheobservedvelocityfieldexcludingbadordeadfibers. and distribution of the ionized-gas in ESO-LV 3520470, since WewerenotabletoconstructanyreliablediskmodelforESO- it was in blend with a night-sky emission line. The Hα and LV3520470,becauseitsvelocityfieldturnedouttobeveryir- [S II]λ6716 intensity maps show that the emitting regions are regular. aligned along the galaxy major axis (Fig. 1). The ionized-gas Assuming a spherical mass distribution, the mass density distributionischaracterizedbythreeprominentblobs:a fainter profileisgivenby oneinthegalacticcenterandtwobrighteronesatthetwosides. 1 v dv v 2 There is no velocity gradient along the galaxy major axis. ρ(r)= 2 c c + c , (4) 4πG " r dr (cid:18) r (cid:19) # This is consistent with the long-slit observations in the same wavelength range by McGaughetal. (2001). They found that where vc is the circular velocity (e.g., deBloketal. 2001; the gas rotation is very low (v ≤ 10 km s−1) out to 20′′. We Swatersetal.2003).Toavoidpossiblebiases,wederivedvc by measureda ∆v ≃ 50 km s−1 overa radialrangeof 16′′ (corre- deprojectingtheline-of-sightvelocitiesvlos measuredalongdif- sponding to about 4 kpc) along a direction close to the galaxy ferentaxes withoutadoptingany parametricfunction(e.g.,Eq. minoraxis(PA=160◦).Themisalignedvelocitygradientisnot 1) to describe the velocity field. Finally, we fitted the resulting associatedtoanyfeatureoftheintensitymaps,sinceitscenterof massdensityprofileswithapowerlawρ(r) ∼ rα.Thelogarith- symmetryisoffsetbyabout2′′westwardwithrespecttothecen- micslopeαwasderivedexcludingthedatapointsinsidethesee- tralintensitypeak.Thesefeaturescouldbeinterpretedasdueto ingdisk(Tab.1).ESO-LV5340200wastheonlysamplegalaxy thepresenceofakinematically-decoupledcomponent,similarto with a velocity field suitable for such a kind of analysis. The theinnerpolardisksfoundinanumberofearly-typediskgalax- gasvelocityfieldsoftheotherthreegalaxiesweredominatedby ies (Corsinietal. 2003; Coccatoetal. 2005;Sil’Chenko2006). non-circularandnon-orderedmotions. After masking the central region, negligible rotation velocities areobserved.Therefore,wewerenotabletofindthekinematic centerandtheradialprofileofthemassdensitywasnotderived. 4. Results 4.1.ESO-LV1860550 4.3.ESO-LV4000370 Thefieldofviewcovers3.8×3.8kpc2atthegalaxydistance.The intensity and kinematic maps derived from the two exposures The field of view covers2.4×2.4 kpc2 at the galaxy distance. availableforthisgalaxyareinagreement.Theintensitymapsof Thecenterofthefielddoesnotcorrespondtothekinematiccen- theHα and[NII]λ6583linesare shownin Fig. 1. Theyunveil ter, which is located in the northeastern quadrant. It is marked the presence in the center of the field of view of a region with with a cross in Fig. 1. The Hα and [S II]λ6716intensity maps a size of about 7′′ ×14′′ and oriented along the galaxy major showaclumpydistributionoftheionizedgas.Anintensitypeak axis,where I([NII]λ6583)/I(Hα) ≥ 2.Atlargerradiitheratio wasobservedinthesouthwesternquadrantatabout6′′fromthe Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) 5 Fig.3. Map of the velocity residuals of ESO-LV 1860550(left panel), ESO-LV 4000370(central panel), and ESO-LV 5340200 (rightpanel)aftersubtractingthebest-fitcircularvelocityfield.Acrossindicatesthekinematiccenter. galacticcenter,whichischaracterizedbyalowemissioninten- amaximumvalueofabout120km s−1.Thisisduetothecom- sity. bined effectof the limited spatial resolutionand sharp velocity The velocity field, although it is not entirely visible, is not gradient. characterizedbytheexpectedpatternforaregularrotatingdisk. Since the ionized gas of ESO-LV 5340200is characterized Infact,itdisplaysanS-shapeddistortioninthenucleusandro- by ordered motions, we used its velocity field as a test case to tationaroundthegalaxyminoraxis.Thecentralkinematically- study the typical uncertainties in estimating the mass density decoupled component is seen in the residual map (Fig. 3) ob- profilebymeansoflong-slitspectroscopy.We dividedthedisk tained by subtracting the circular velocity model from the ob- infive22.5◦−widewedges.Thefirstwedgeisorientedalongthe served velocity field, after masking the central regions. It has line of nodes, two wedges are oriented along directions which a size of about 4′′ (corresponding to 0.7 kpc) and a ∆v ≃ 60 are±22.5◦offsetfromthelineofnodes,andthelasttwowedges km s−1. Its position angle is PA = 150◦, whereas the position areorientedalongdirectionswhichare±45◦offsetfromtheline angleofthegalaxymajoraxisisPA = 68◦ Thevelocitydisper- of nodes. According to galaxy inclination and orientation, on sionreachesinthecenteritsmaximumvalueofabout45kms−1, the sky plane the wedges are oriented along directions which anditismildlycorrelatedwiththe I([NII]λ6583)/I(Hα)ratio. are ±12.4◦ and ±27.9◦ from the galaxy kinematic major axis Its value is about 1 in the very center and it falls to less than (PA = 177◦). We extracted the velocity curve in each wedge 0.5 at largerradii. The small numberof data points, due to the ofthetwo-dimensionalvelocityfield.Tenvelocitycurveswere poorcenteringofthe galaxyonthefield ofview,didnotallow derived,sincetheapproachingandrecedingsidesofthegalaxy toderivethecentralmassdensitydistributionforthisobject. were independently considered. For each curve, we computed the term dv /dr on adjacent points. The density profiles were c hencederivedfromEq.4andplottedinFig.4.Thelogarithmic 4.4.ESO-LV5340200 slopeα = 1.2±0.3wasdeterminedatadistancefromthecen- ter equal to the seeing disk size, where we were confidentthat Thisisthefarthestgalaxyofthesample.Itwasincludedinour list due to the wrong systemic velocity (cz = 3551 km s−1) the data were not affected by beam smearing effects. The size reported in the ESO-LV catalog. We measured v = 17320 of the deprojected seeing disk increases for directions drifting sys kms−1andderivedadistanceof227Mpc.Therefore,thefieldof awayfromthemajoraxisasshowninFig.4.Thescatterinthe measurements is due to random errors in the α determination. viewcovers14×14kpc2. Thetwoexposuresavailableforthis We did not find any trend with the position angle as we would galaxy differ in the telescope pointing. The intensity and kine- expectifthenon-circularmotionsinducedbyatriaxialcompo- matic maps derived from them are in agreement. This ensures nent were present. It is worth noticing that the galaxydistance thatthedatareductionwassuccessfullyperformed.Weexcluded andthepresenceofabrightbulge(Pizzellaetal.2008a)donot the [N II]λ6583line in measuringthe kinematicsand distribu- allow to derive the mass density distribution of the DM com- tionoftheionized-gasinESO-LV5340200,sinceitwasinblend ponent without applying a full dynamical model (Corsinietal. with two night-sky emission lines. The distribution of the ion- 1999; Pignatellietal. 2001, e.g.,). The velocity field of ESO- ized gas seen in the Hα intensity map is similar to that of the LV5340200isdifferentfromthoseofLSBgalaxiesanalyzedin starsshowedinthereconstructedimageofthestellarcontinuum measuringthecentralcontentanddistributionofDMtoaddress (Fig.1). thecore/cuspproblem(e.g.,deBloketal.2001;McGaughetal. The velocity field of the ionized gas exhibits the overall 2003;KuziodeNarayetal. 2006). Inparticular,the centralve- shapeofarotatingdisk(Fig.1).ESO-LV5340200hasthemost locitygradientsofESO-LV5340200wasderivedwithlargerun- regularfieldofthesamplegalaxies.Thermsis8km s−1 inthe certainties, andthereforethe value of 0.3can be consideredan central 2× 3 kpc2 of the residual image obtained by subtract- upperlimit to the typicaluncertaintyin the estimation of loga- ingthecircularvelocitymodelfromtheobservedvelocityfield rithmicslopeα. (Fig.3).Onlykinematicsub-structureswithasizesmallerthan 0.5kpcremainundetected.Foracomparison,wemeasuredthe rms in the residualmap of ESO-LV 1860550after rebinningit 5. Discussionandconclusions tothespatialsamplingofESO-LV5340200.Wefoundarmsof 25 km s−1 (26 km s−1 before the rebinning).The velocity dis- The results of the study of the sample galaxiescan be summa- persionisabout40kms−1.Onlyinthecentralfibersitpeaksthe rized into two remarkable aspects, concerning the presence of 6 Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) We concludedthe errorwederivedcanbeconsideredanupper limit to the typicaluncertaintyin the estimation of logarithmic slope of the mass density. Althoughit may be substantially re- ducedwiththeanalysisofthefulltwo-dimensionalvelocityfield (Simonetal.2005;KuziodeNarayetal.2006),thepresenceof non-circularandnon-orderedgasmotionremainsanunresolved issue. A way to circumvent it is using the stellar kinematics. Themeasurementofthestellarline-of-sightvelocitydistribution (Pizzellaetal.2008a)allowstobuildreliablemassmodelspro- vidingavalidalternativetotheusualgas-basedmassdistribution determinations(Pizzellaetal.2008b;Magorrianetal.2008). Acknowledgements. The data published in this paper were reduced using the VIMOS Interactive Pipeline and Graphical Interface (VIPGI) designed by Fig.4. The mass density profiles along the major (PA = 177◦) the VIRMOS Consortium. We thank Bianca Garilli for her support in using VIPGIandhospitality attheINAF-IASFMilano. Thisworkwasmadepossi- and four diagonalaxes of ESO-LV 5340200.In each panelthe ble through grants PRIN 2005/32 byIstituto Nazionale diAstrofisica (INAF) diamonds and crosses correspond to data measured along the andCPDA068415/06byPaduaUniversity. approachingand receding side of the galaxy, respectively. The arrowmarksthesizeoftheseeingdisk. References non-orderedmotionsoftheionizedgasandtheuncertaintiesof Battaner,E.,Mediavilla,E.,Guijarro,A.,Arribas,S.,&Florido,E.2003,A&A, 401,67 recoveringthelogarithmicslopeoftheradialprofileofthemass Bertola,F.,Cinzano,P.,Corsini,E.M.,Rix,H.,&Zeilinger,W.W.1995,ApJ, densityingalaxieswitharegularkinematics. 448,L13 In three objects we found the evidence for both non- Borriello,A.&Salucci,P.2001,MNRAS,323,285 ordered motions and kinematically-decoupled components. Cinzano,P.,Rix,H.-W.,Sarzi,M.,etal.1999,MNRAS,307,433 Coccato,L.,Corsini,E.M.,Pizzella,A.,&Bertola,F.2005,A&A,440,107 ESO-LV3520470andESO-LV4000370hostasmall(∼ 1kpc) Coccato,L.,Corsini,E.M.,Pizzella,A.,&Bertola,F.2007,A&A,465,777 structure which is rotating around the galaxy minor axis. In Coccato,L.,Corsini,E.M.,Pizzella,A.,etal.2004,A&A,416,507 ESO-LV1860550wefoundtheevidenceforagaseouscompo- Corsini,E.M.,Pizzella,A.,Coccato,L.,&Bertola,F.2003,A&A,408,873 nentinfallingtowardthegalacticcenter.Thereisnostrongcor- Corsini,E.M.,Pizzella,A.,Sarzi,M.,etal.1999,A&A,342,671 Courteau,S.&Rix,H.1999,ApJ,513,561 relationbetweenthedistributionandkinematicsoftheionized- deBlok,W.J.G.,McGaugh,S.S.,Bosma,A.,&Rubin,V.C.2001,ApJ,552, gas of these galaxies and their starlight distribution. Indeed, L23 there is no hint for the presence of the decoupled components deBlok,W.J.G.,McGaugh,S.S.,&vanderHulst,J.M.1996,MNRAS,283, inbroad-bandimages(seePizzellaetal.2008a). 18 Thesekinematicdisturbancesseriouslyaffectthedetermina- Diemand,J.,Zemp,M.,Moore,B.,Stadel,J.,&Carollo,C.M.2005,MNRAS, 364,665 tionoftheradialprofileofthemassdensity.Infact,thetypical Fixsen,D.J.,Cheng,E.S.,Cottingham,D.A.,etal.1996,ApJ,470,63 sizes ofthese features(0.5–1kpc)are comparabletothe radial Kuzio deNaray, R.,McGaugh, S.S.,deBlok, W.J.G.,&Bosma,A.2006, range where the differences between the core and cuspy den- ApJS,165,461 sity radial profiles are expected to be observed. Their velocity Lauberts,A.&Valentijn,E.A.1989,TheSurfacePhotometryCatalogueofthe amplitudes (30–50 km s−1) are also of the same order of both ESO-UppsalaGalaxies(EuropeanSouthernObservatory,Garching) Magorrian,J.,Sarzi,M.,Corsini,E.M.,etal.2008,MNRAS,inpreparation theobservedrotationvelocitiesandvelocitydifferencesinferred McGaugh,S.S.,Barker,M.K.,&deBlok,W.J.G.2003,ApJ,584,566 bythedifferentmassdensityprofiles.Themajorityofprevious McGaugh,S.S.&deBlok,W.J.G.1998,ApJ,499,41 studies on the central mass distribution of LSB galaxies were McGaugh,S.S.,Rubin,V.C.,&deBlok,W.J.G.2001,AJ,122,2381 Moore,B.,Quinn,T.,Governato,F.,Stadel,J.,&Lake,G.1999,MNRAS,310, based on long-slit spectroscopy, where the presence of kine- 1147 matic irregularities could have been undetected. Non-circular More´,J.J.,Garbow,B.S.,&Hillstrom,K.E.1980,UserguideforMINPACK-1 motionsarecommonphenomenonininnerregionsofdiskgalax- (ArgonneNationalLaboratoryReportANL-80-74) ies. Indeed, Coccatoetal. (2004) found that about 50% of the Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1997,ApJ,490,493 unbarredbrightgalaxiesshowstrongoff-planeandnon-circular Navarro,J.F.,Hayashi,E.,Power,C.,etal.2004,MNRAS,349,1039 Osterbrock,D.E.,Fulbright,J.P.,Martel,A.R.,etal.1996,PASP,108,277 gasmotionsintheircenters. Pignatelli,E.,Corsini,E.M.,VegaBeltra´n,J.C.,etal.2001,MNRAS,323,188 ESO-LV5340200wastheonlysamplegalaxycharacterized Pizzella,A.,Corsini,E.,Sarzi,M.,etal.2008a,MNRAS,submitted byaregularvelocityfield.Itwastoodistanttorecoverthemass Pizzella, A.,Corsini, E.M.,Sarzi, M.,Magorrian, J.,&Bertola, F.2008b,in density radial profile in the central kpc with the desired accu- FormationandEvolutionofGalaxies,ed.J.G.Funes,S.J.&E.M.Corsini (ASP,SanFrancisco),inpress racy. However, it represented a good test-bed to estimate the Salucci,P.2001,MNRAS,320,L1 uncertainties of the measurement of the central velocity gradi- Scodeggio,M.,Franzetti,P.,Garilli,B.,etal.2005,PASP,117,1284 ent. This is crucial in deriving the logarithmic slope α of the Sil’Chenko, O. K. 2006, in ASSL Vol. 337: Astrophysical Disks, ed. A. V. mass density radial profile in objects displaying regular kine- Fridman,M.Y.Marov,&I.G.Kovalenko(Springer,Dordrecht),275 matics. We found α = 1.2 ± 0.3. The error was obtained by Simon,J.D.,Bolatto,A.D.,Leroy,A.,Blitz,L.,&Gates,E.L.2005,ApJ,621, 757 fitting a power law to the density distribution derived from the Swaters,R.A.,Verheijen,M.A.W.,Bershady,M.A.,&Andersen,D.R.2003, differentrotationcurvesextractedalongseveralpositionangles. ApJ,587,L19 Therefore,it represents a good estimate of the scatter obtained vandenBosch,F.C.,Robertson, B.E.,Dalcanton, J.J.,&deBlok,W.J.G. by derivingα using the gas kinematic measured from long-slit 2000,AJ,119,1579 vandenBosch,F.C.&Swaters,R.A.2001,MNRAS,325,1017 spectroscopy. On the other hand, the central velocity gradient ofESO-LV5340200islargerthanthatoftypicalLSBgalaxies. Pizzellaetal.:Non-orderedgasmotioninthecenterofLSBgalaxies.(RN) 7 ListofObjects ‘ESO-LV1860550’onpage2 ‘ESO-LV3520470’onpage2 ‘ESO-LV4000370’onpage2 ‘ESO-LV5340200’onpage2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.