ebook img

Detection of low energy antiproton annihilations in a segmented silicon detector PDF

25 Pages·2014·1.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detection of low energy antiproton annihilations in a segmented silicon detector

Home Search Collections Journals About Contact us My IOPscience Detection of low energy antiproton annihilations in a segmented silicon detector This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 JINST 9 P06020 (http://iopscience.iop.org/1748-0221/9/06/P06020) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 188.184.3.56 This content was downloaded on 10/06/2015 at 07:16 Please note that terms and conditions apply. PUBLISHEDBYIOPPUBLISHINGFORSISSAMEDIALAB RECEIVED:November18,2013 REVISED:February14,2014 ACCEPTED:April25,2014 PUBLISHED:June25,2014 Detection of low energy antiproton annihilations in a segmented silicon detector 2 0 AEgIS collaboration 1 S. Aghion,a,b O. Ahle´n,c A.S. Belov,d G. Bonomi,e,f P. Bra¨unig,g J. Bremer,c 4 R.S. Brusa,h G. Burghart,c L. Cabaret,i M. Caccia,j C. Canali,k R. Caravita,l F. Castelli,l G. Cerchiari,m S. Cialdi,l D. Comparat,i G. Consolati,a,b J.H. Derking,c J S. Di Domizio,n L. Di Noto,h M. Doser,c A. Dudarev,c R. Ferragut,a,b A. Fontana,f I P. Genova,f M. Giammarchi,b A. Gligorova,o,1 S.N. Gninenko,d S. Haider,c N J. Harasimowicz,p T. Huse,q E. Jordan,m L.V. Jørgensen,c T. Kaltenbacher,c S A. Kellerbauer,m A. Knecht,c D. Krasnicky´,r V. Lagomarsino,r A. Magnani,f,s T S. Mariazzi,t V.A. Matveev,d,u F. Moia,a,b G. Nebbia,v P. Ne´de´lec,w N. Pacifico,o V. Petra´cˇek,x F. Prelz,b M. Prevedelli,y C. Regenfus,k C. Riccardi,s,f O. Røhne,q A. Rotondi,s,f H. Sandaker,o A. Sosa,p M.A. Subieta Vasquez,e,f M. Sˇpacˇek,x 9 G. Testera,n C.P. Welschp and S. Zavatarellin aPolitecnicodiMilano, P PiazzaLeonardodaVinci32,20133Milano,Italy 0 bIstitutoNazionalediFisicaNucleare,Sez. diMilano, 6 ViaCeloria16,20133Milano,Italy cEuropeanOrganisationforNuclearResearch,PhysicsDepartment, 0 1211Geneva23,Switzerland 2 dInstituteforNuclearResearchoftheRussianAcademyofSciences, 0 Moscow117312,Russia eUniversityofBrescia,DepartmentofMechanicalandIndustrialEngineering, ViaBranze38,25133Brescia,Italy fIstitutoNazionalediFisicaNucleare,Sez. diPavia, ViaAgostinoBassi6,27100Pavia,Italy gUniversityofHeidelberg,KirchhoffInstituteforPhysics, ImNeuenheimerFeld227,69120Heidelberg,Germany hDepartmentofPhysics,UniversityofTrentoandTIFPA-INFN, ViaSommarive14,38123Povo,Trento,Italy iLaboratoireAime´ Cotton,CNRS,Universite´ ParisSud,ENSCachan, Baˆtiment505,Campusd’Orsay,91405OrsayCedex,France 1Correspondingauthor. (cid:13)c CERN2014forthebenefitoftheAEGIScollaboration,publishedundertheterms oftheCreativeCommonsAttribution3.0LicensebyIOPPublishingLtdandSissa doi:10.1088/1748-0221/9/06/P06020 Medialabsrl. Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthe publishedarticle’stitle,journalcitationandDOI. jInsubriaUniversity, Como-Varese,Italy kUniversityofZurich,PhysicsInstitute, Winterthurerstrasse190,8057Zurich,Switzerland lUniversityofMilano,DepartmentofPhysics, ViaCeloria16,20133Milano,Italy mMaxPlanckInstituteforNuclearPhysics, Saupfercheckweg1,69117Heidelberg,Germany nIstitutoNazionalediFisicaNucleare,Sez. diGenova, ViaDodecaneso33,16146Genova,Italy oUniversityofBergen,InstituteofPhysicsandTechnology, 2 Alle´gaten55,5007Bergen,Norway 0 pUniversityofLiverpoolandtheCockroftInstitute,Liverpool,Sci-TechDaresbury, 1 KeckwickLane,Daresbury,Warrington,WA44AD,UnitedKingdom qUniversityofOslo,DepartmentofPhysics, 4 SemSælandsvei24,0371Oslo,Norway rUniversityofGenoa,DepartmentofPhysics, J ViaDodecaneso33,16146Genova,Italy sUniversityofPavia,DepartmentofNuclearandTheoreticalPhysics, I ViaBassi6,27100Pavia,Italy N tStefanMeyerInstituteforsubatomicPhysics, S Boltzmanngasse3,1090Vienna,Austria uJointInstituteforNuclearResearch, T 141980Dubna,Russia vIstitutoNazionalediFisicaNucleare,Sez. diPadova, 9 ViaMarzolo8,35131Padova,Italy wClaudeBernardUniversityLyon1,InstitutdePhysiqueNucle´airedeLyon, 4RueEnricoFermi,69622Villeurbanne,France P xCzechTechnicalUniversityinPrague,FNSPE, 0 Brˇehova´ 7,11519Praha1,CzechRepublic yUniversityofBologna,DepartmentofPhysics, 6 ViaIrnerio46,40126Bologna,Italy 0 E-mail: [email protected] 2 ABSTRACT: The goal of the AEg¯IS experiment at the Antiproton Decelerator (AD) at CERN, 0 is to measure directly the Earth’s gravitational acceleration on antimatter by measuring the free fall of a pulsed, cold antihydrogen beam. The final position of the falling antihydrogen will be detectedbyapositionsensitivedetector. Thisdetectorwillconsistofanactivesiliconpart,where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precisiononthemeasurementofg¯withabout600reconstructedandtimetaggedannihilations. We present here the prospects for the development of the AEg¯IS silicon position sentive de- tector and the results from the first beam tests on a monolithic silicon pixel sensor, along with a comparisontoMonteCarlosimulations. KEYWORDS: Solid state detectors; Detector modelling and simulations I (interaction of radiation withmatter,interactionofphotonswithmatter,interactionofhadronswithmatter,etc) Contents 1 Introduction 1 2 DevelopmentofthesilicondetectorforAEg¯IS 2 2.1 Annihilationofantiprotonsinsilicon 2 2.2 MonteCarlosimulations 3 2.3 Detectorrequirementsanddesign 4 2 3 Testbeamsetup 6 0 3.1 Antiprotonsourceandtestfacility 6 1 3.2 TheMIMOTERAdetector 8 4 3.3 CalibrationoftheMIMOTERAdetectorandclustering 9 4 Results 10 J 4.1 Dataselection 10 I 4.2 Backgroundsources 10 4.3 Clustercharacteristics 15 N 4.4 Tracksrecognition 16 S 4.5 ComparisonwithMonteCarlosimulations 16 T 5 Summaryandconclusions 19 9 P 1 Introduction 0 6 TheAEg¯ISexperiment[1]atCERN(figure1)aimsatverifyingtheWeakEquivalencePrinciplefor 0 antimatterbymeasuringtheEarth’sgravitationalaccelerationgforantihydrogen. Severalattempts 2 havebeenmadeinthepasttomeasurethegravitationalconstantforantimatter,bothforcharged[2, 3]andneutralantiparticles[4–6]. However,noneoftheseexperimentsarrivedatconclusiveresults. 0 Recently, a study from the ALPHA collaboration [7] sets limits on the ratio of gravitational mass to the inertial mass of antimatter but is still far from testing the equivalence principle. Another experiment,GBAR,[8]hasbeenproposedbutnotyetbuilt. Coldantihydrogen(100mK)inRydbergstateswillbeproducedthroughthechargeexchange reactionbetweenRydbergpositroniumandcoldantiprotonsstoredinaPenningtrap[9]. Applying an appropriate electric field will accelerate the formed antihydrogen in a horizontal beam, with a typicalaxialvelocitydistributionspanningafew100m/s[10]. Some of the trajectories will be selected through a moire´ deflectometer [11], which will con- sist of two vertical gratings producing a fringe pattern on a downstream annihilation plane (see figure 2). This plane will be the first layer of the position sensitive detector where the antihydro- gen will impinge with energies of the order of meV and annihilate. The vertical deflection of the –1– 2 0 1 Figure1. SchematicviewofthecentralregionoftheAEg¯ISexperiment. 4 pattern is proportional to the gravitational constant to be measured. Over a flight path of ∼1 m, J the deflection is expected in the order of ∼20 µm for a 1 g vertical acceleration [1]. A vertical I resolution better than 10 µm is required to meet the goal of 1% precision on the g¯ measurement N with600reconstructedandtimetaggedannihilations[12]. S According to the current design, the position sensitive detector will be a hybrid detector consisting of an active silicon part, where the annihilation takes place, followed by an emulsion T part[12,13]. Thesilicondetectorwillprovideonlinemeasurementanddiagnosticsoftheantipro- tonannihilationsaswellasthenecessarytimeofflightinformation. 9 The aim of the present study is to perform the first measurement and direct detection of slow antiproton(∼few100keV)annihilationsinsilicon. Thisisthefirststeptowardsunderstandingthe P signatureofantihydrogenannihilations,whichisoneofthemostfundamentalaspectsofdesigning a silicon position sensitive detector for AEg¯IS. To our knowledge, only in one other experiment 0 were annihilations in a silicon sensor directly detected and simulated [14]. However, much faster 6 antiprotonswereusedinthatstudy(608MeV/c)thaninthestudypresentedhere. 0 2 2 DevelopmentofthesilicondetectorforAEg¯IS 0 InAEg¯IS,thesilicondetectorwillactastheannihilationsurface. Kineticenergyoftheantihydro- genatomwillbeinsufficienttogenerateadetectablesignal,sotheantihydrogenwillbeindirectly detected through the detection of the annihilation products. We will now present available exper- imental data on the annihilation process of antihydrogen (antiprotons) in matter and the available MonteCarlotoolsforitssimulation. ThisconstitutesthebasisforthedesignoftheAEg¯ISsilicon detector,whichwillbepresentedin2.3. 2.1 Annihilationofantiprotonsinsilicon The annihilation process of antihydrogen in matter is similar to the one of an antiproton as the positron annihilates immediately when meeting an atomic electron. Previous experiments at –2– Readout ASICs 77 K vessel K) m 0 0 1 n ( e g dro mE y antihy osuiln g er n e w ~0.5 m o L Moire Strip detector (25 um pitch, 50 um, 300 um support 2 deflectometer ribs, 20x20 cm^2 area covered) 0 Figure 2. The moire´ deflectometer producing a pattern on the position sensitive detector, where several 1 particlepathsintersectatthedetectorplane. 4 LEAR [15] have studied annihilations of antiprotons in elements with different Z. In this pro- J cess,theantiprotonlosesenergyasittraversesmatterandannihilateswithaprotonatrestcreating I charged (1.53±0.03 per annihilation per charge sign) and neutral pions (1.96±0.23 per anni- N hilation). For elements with atomic numbers >1 the average ratio is shifted towards producing morenegativelychargedpions,duetothepossibleannihilationoftheantiprotonwithnuclearneu- S trons. Thepionsproducedintheannihilationmayfurtherinteractwithothernucleonsresultingin T nuclear fragments and isolated neutrons and protons. For silicon, the stopping power of the low- est incoming antiproton energy so far measured (0.188MeV) shows it to be 32% lower than for 9 protons[16]. Antimatter annihilation has been detected with silicon sensors previously [17], through the detectionofpionsemittedintheannihilationprocess. ThesepionsareMinimumIonizingParticles P (MIPs)depositing∼0.3keV/µm[18]inmatter,anegligiblefractioncomparedwiththeiraverage 0 momentumof∼350MeV/c[19]. 6 However,inourpresentapplication,forthefirsttimetheantiprotonannihilateswithanucleon 0 in the bulk of the detector itself. When the annihilation takes place on-sensor, the largest fraction of deposited energy is due to the heavy fragments. These fragments are Highly Ionizing Particles 2 (orHIPs). Energydepositsandrangesinsiliconfordifferentannihilationproductssimulatedusing 0 theSRIM[20]packageareshowninfigure3and4. HIPs(slowprotonsandheavierions)deposit locally(withinafewortensofµmfromtheinteractionpoint)alloftheirkineticenergy. Itbecomes thus evident that being able to discriminate between the signal produced by HIPs or MIPs in the detectorcanhelpincreasingsignificantlytheresolutionontheannihilationposition. 2.2 MonteCarlosimulations In the present work we compare data with Monte Carlo simulations, using GEANT4, release 4.9.5.p01, interfaced with VMC (Virtual Monte Carlo) software, release v2-13c [21]. Two par- ticularGEANT4modelswerestudied,CHIPS(QGSPBERT)andFTFP(FTFPBERTTRV). The CHIPS (CHiral Invariant Phase Space) model [22] is a 3D quark-level event genera- tor for the fragmentation of excited hadronic systems into individual hadrons, whereas the FTFP –3– m] m] M. dE/dx [keV/µ103 1233HHHHe 468LHHHieee pping Range [µ110034 E. 102 Sto102 12HH 3H 10 3He 10 4He 6He 1 8He Li 10 20 40 60 80 100 10-10 20 40 60 80 100 Kinetic Energy [MeV] Kinetic Energy [MeV] 2 Figure 3. Energy deposition in silicon for different Figure4. Stoppingrangeinsiliconfordifferentnu- 0 nuclearfragmentsthatcanbegeneratedinanannihi- clearfragmentsthatcanbegeneratedinanannihila- 1 lationevent,calculatedwiththeSRIMpackage[20]. tionevent,calculatedwiththeSRIMpackage. 4 model[23]reliesonastringmodeltodescribetheinteractionsbetweenquarks. J The CHIPS and FTFP models differ in the production rate and in the composition of the annihilation products. CHIPS produces heavy nuclear fragments in only 20% of the events while I FTFPgeneratesheavyfragmentsinallofthem. Inaddition,CHIPSproducesmorethanthreetimes N asmanyprotons,neutronsandalphaparticlesineachcollision,asseeninfigure5,whichprovides S themultiplicitiesforthedifferentproductsforannihilationsatrest. T Bothmodelscansimulateannihilationofantiprotonswithnuclei,thoughcomparisonofsim- ulations to data for low-energy antiprotons in silicon is missing. CHIPS simulations have been previously compared with uranium and carbon data, while the newer FTFP still lacks comparison 9 todataforantiprotonenergiesbelow120MeV[24]. Table 1 shows a comparison of experimental values obtained for 12C and 40Ca, the two el- P ements closest to silicon, with LEAR [25], and the simulated values for the same elements and 0 silicon. However, the values presented are for higher energies (> 6MeV) than in this study. The 6 table shows that for the kinetic energy range of 6-18MeV, FTFP describes the data obtained for protonsbetterthanCHIPS.Ontheotherhand,CHIPSdescribesbettertheexperimentalvaluesfor 0 ionspecieswithhigheratomicnumbersandforhigherenergies. 2 0 2.3 Detectorrequirementsanddesign As already shown in figure 2, the AEg¯IS silicon position sensitive detector will act as a separa- tionmembranebetweentheultra-highvacuumoftheantihydrogenformationandtransportregion and the secondary vacuum where the emulsion planes will be positioned. The resulting design includes an array of co-planar single-sided silicon strip sensors, built with a strip pitch of 25 µm and mounted on a silicon mechanical support wafer, hosting the readout electronics. This system will provide the one-dimensional vertical (y) deflection information, though an approach based on resistive strips, able to provide the x coordinate as well, as demonstrated in [26], is currently understudy. A further requirement of the silicon detector will be a thickness, in the active regions, of 50µm. Thiswillallowtominimizethescatteringofannihilationproducts,detectedfurtherdown- –4– Table1. Measuredandsimulatedproductionyields(for100annihilations)forthemostimportantnuclear fragmentsproducedinannihilationofantiprotonswithhighAnuclei. ExperimentaldataisfromLEAR[25] for12Cand40Ca,thetwoelementsclosesttosilicon. Energyreferstothekineticenergyoftheannihilation products. These measured values are compared with the simulated values for calcium, carbon and silicon using the two GEANT4 models, CHIPS and FTFP. FTFP describes the data obtained with protons better thanCHIPS,whileCHIPSseemstobeabetterdescriptionforionspecieswithhigheratomicnumbersand higherenergies. 28PSi ±.08 ±.03 ±.01 ±.004 0 2 FTF .586 .122 .15 .016 0 28SSi ±.10 ±.04 ±.02 ±.005 ±.01 1 CHIP .1700 .159 .30 .023 .18 4 0Ca .08 .03 .01 .004 J 4FTFP .±602 .±120 .±10 .±013 0 I N CHIPS40Ca .±.172010 .±.14904 .±.2702 .±.022005 .±.1901 ST AR Ca ±.41 ±.11 ±.04 ±.017 ±.016 9 LE40 .742 .181 .57 .222 .218 12PC ±.08 ±.03 ±.01 ±.003 0 P0 FTF .560 .121 .13 .011 6 12SC ±.10 ±.04 ±.02 ±.001 ±.01 0 CHIP .1680 .159 .28 .019 .18 20 12C .20 .08 .04 .017 .012 R ± ± ± ± ± LEA .233 .93 .45 .172 .114 Energy (MeV) 6-18 8-24 11-29 36-70 36-70 e p d t H α 3 –5– city 8 Chips ultipli 7 FTFP M 6 5 4 3 2 1 0 p+ p- p0 K h, h'l p n d Atnnih3Hilaetioan prhoedauvcygt isons 2 0 Figure5. Multiplicityofdifferentannihilationproducts(perannihilation)aspredictedbythetwomodels 1 CHIPSandFTFP,overthewholekineticenergyspectrum. 4 streambytheemulsiondetector,allowingforaprecisevertexreconstruction. Toachievethegoal, J thick support ribs will guarantee the mechanical stability of the system, with size and position of I theribsbeingoptimizedtoallowforthemaximumefficiencyofthedetectorinareaswhereahigher N beamluminosityisexpected. S Finally,inordertoavoidtheblackbodyradiationcomingfromthedetectorincreasingthean- tiproton plasma temperature (which would increase the thermal velocity of the antihydrogen), the T wholedetectorsystemwillbekeptatcryogenictemperatures(77Korlower). Thiswillrequirethe electronicstobedesignedforsuchconditions. ThefeasibilityofoperationofstandardCMOSread- 9 outASICsincryogenictemperatureshasalreadybeenprovenin[27]. TheASICdesignforAEg¯IS, underdevelopment,willrelyonanimprovedintegrationandcommunicationprotocol(enablingthe P readoutof∼3000strips)andawiderdynamicrange,tocopewiththehighenergydepositedinthe sensorfromtheannihilationevents. 0 Given the complex nature of the annihilation process, Monte Carlo simulations will be re- 6 quired to validate reconstruction algorithms to be implemented in the final system. Part of the 0 aim of the present work is the validation of the available simulation physics model, in the partic- 2 ular case of direct annihilation in a silicon sensor, with data available for the first time for low 0 antiprotonenergies. 3 Testbeamsetup 3.1 Antiprotonsourceandtestfacility TheAEg¯ISexperimentissituatedattheAntiprotonDecelerator(AD)whichdelivers∼3×107low energy (5.3MeV) and bunched (∼120 ns) antiprotons every ∼100 s. During tests in May 2012 thefirstsectionoftheAEg¯ISexperimentwasinplace,comprisinga5Tsuperconductingsolenoid magnetenclosingaPenningtrapinanultrahighvacuum(UHV)of10−11 mbar. While passing through the AEg¯IS apparatus, the antiprotons lose energy first through two aluminum degraders, one fixed (18±2.7 µm) and one mobile (0.8±0.2, 2±0.5, 3±0.75, 4±1 and –6– to DAQ Al degrader (150 um ) Ti foil (2 um) Si beam counter (55 um) Al foil (0-5 um) 5T Solenoid Magnet Mimotera Al foil (18 um) Mimotera UHV (~10-9 mbar) 43 cm 2 cm T r ap region 4 cm 2 cm Antiprotons Fringe Field 4 cm (5.3 MeV) 28.4 61.1 0.5 cm 107 cm Outer Vacuum (~10-6 mbar) Outer Vacuum (~10-6 mbar) 102 cm Main apparatus (1.7 m) Six-cross chamber (27 cm) 2 0 Figure 6. Top view (left) and axial view (right) of the test set-up. The center of the silicon detector (MI- MOTERA)isinstalled40mmoffaxisand430mmfromthemainapparatustoavoidsaturationduetothe 1 highbeamintensity. 4 5±1.25µm),thenasiliconbeamcounter(55±5.5µm)[29]andanotherfixedaluminumdegrader J (150±15 µm)asshowninfigure6. Afterthis,lessthan1%oftheincomingantiprotonsfromthe I ADaretrappedinflightbythePenningtrap,whiletherestcontinuedownstream. N Before entering a six-cross vacuum chamber, where the detector was mounted (figure 6) the S antiproton beam traversed a 2 µm thick titanium foil used to separate the UHV region from the secondary vacuum (∼ 10−7 mbar). In the six-way cross the antiprotons were deviated by the T solenoid fringe field before hitting the silicon detector, which was mounted perpendicular to the beamand40mmoffaxis(figure6,and7). 9 To overcome the unavoidable small inaccuracies in the stopping power calculation through thedegraders’totalthickness,thesimulation(seesection2.2)wasindependentlytunedagainstthe P antiprotontrappingefficiencyduringthetestsoftheantiprotoncapturetrap. Thesimulatedtrapping 0 efficiency with 229 µm of degrading material was equivalent to the real efficiency obtained with 6 225µmofdegraders. Nevertheless,theeffectofboth225and229µmsiliconequivalentdegrading materialthicknessesweresimulatedandcomparedwithdatapresentedhereforcompleteness. 0 Figure8showsthekineticenergydistributionoftheantiprotonsjustbeforereachingtheMI- 2 MOTERA detector as simulated with GEANT4. The average kinetic energy according to simula- 0 tionswas∼250keVfor225 µmmaterialand∼100keVfor229 µm. Thisenergyishigherthan theenergyoftheantihydrogeninthefinalsystem(meV),butmuchlowerthananyenergytestedto date. Thesamesimulation showsthat∼60%of theantiprotonscomingfrom theADreachedthe six-waycrosschamber. Thecorrespondingdistributionofannihilationdepthsisshowninfigure9. FromtheGEANT4simulations(seesection2.2)wecouldalsoestimatethespatialdistribution of the antiproton beam. The resulting incident angle of antiprotons on the MIMOTERA was of 4.5±1.1◦ withrespecttothenormaltothedetectorplane. In order to study the absorption effect on antiprotons and to verify them against the simula- tions,wecovered2/3ofthedetectorsurfacewiththreeverythinaluminumfoils(3,6and9 µm). The foils were suspended parallel to the detector surface at a distance ∼5 mm by means of three thincopperwireswithagaugeof300µm,alsorunningonthepartnotcoveredbythefoils. –7–

Description:
vIstituto Nazionale di Fisica Nucleare, Sez. di Padova, an appropriate electric field will accelerate the formed antihydrogen in a horizontal beam, with a .. Left hand side of the detector was uncovered. [24] The Geant4 collaboration, Geant4 Physics Reference Manual, geant4 10.0, 6 December
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.