ebook img

Detection of concealed weapons using acoustic waves PDF

291 Pages·2013·38.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detection of concealed weapons using acoustic waves

T U O M HE NIVERSITY F ANCHESTER Detection of concealed weapons using acoustic waves A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2012 George A Vadakkel School Of Mechanical, Aerospace And Civil Engineering ABSTRACT Existing weapon detection systems such as metal detectors and X-ray baggage scanners have many drawbacks. While metal detectors can only detect metallic objects, X-ray scanners are unsafe for use on passengers. Also, these systems can only scan people within a short range. These limitations of detecting potentially harmful objects have led to tragic events such as the 9/11 attack on the world trade centre and the 2008 terrorist attack in Mumbai. Development of more advanced security systems would help in curbing such terrorist attacks. These systems could also be used to help security officials in tackling knife and gun related crimes in the streets. The aim of this research is to develop a concealed weapon detection system using acoustic waves. Ideally, the system would have large standoff distance, should be cost-effective and easy to manufacture and would be able to detect both metal and non-metallic weapons. Different techniques such as acoustic signature, resonance acoustic spectroscopy and acoustic imaging were analysed. Acoustic signature techniques identify the target by comparing the acoustic waves reflected by the target to a database of previously recorded acoustic reflections. Resonance acoustic spectroscopy was used on the data acquired using both experimental measurements and Finite Element simulations. A series of resonant frequencies from the acoustic waves reflected by the concealed target were extracted using this technique. This series of resonant frequencies that are unique to the target were used to identify the target. Acoustic camera was used to experimentally record the acoustic reflection from different targets. This was then used to develop images of concealed targets. These tests were performed using commercially available array speaker systems. The probability of improving these results using a better designed ultrasonic or acoustic array speaker system was analysed. This was done by changing different array design parameters and obtaining a highly focused acoustic beam. The results from the experimental tests and Finite Element simulations proved the possibility of using acoustic waves for concealed weapon detection. In the acoustic signature measurements, the frequency spectra of the reflected acoustic waves were shown to be different for different targets. The results from resonance acoustic spectroscopy showed structural resonant frequencies in the frequency spectra that corresponded to the natural frequency of the target. Using acoustic camera kit the image of the concealed target was identified. The array results showed the formation of focused beams for different array configurations. The results showed the formation of grating lobes and side lobes when the inter-element gap became larger than the wavelength of sound waves at the excitation frequency. Finally, a program using neural network was developed to demonstrate how the natural frequencies from the target could be used to identify them. This research work provides a proof of concept of different acoustic wave-based detection and imaging techniques. It has shown the possibility of detecting concealed targets at standoff distances. Using parametric arrays highly focused acoustic or ultrasonic beams could be generated which could be focused on a person suspected of carrying a weapon in a crowded environment. The sound waves reflected back could be analysed using the resonance acoustic spectroscopic technique or one could use the acoustic camera to generate images of targets in real-time. The use of acoustic waves would also help in keeping the cost and complexity of the equipment to a minimum. It also ensures that the public is not exposed to any harmful radiation. The techniques described in this thesis would significantly support the development of a commercially viable, robust acoustic waves based concealed weapon detection system. -2- DECLARATION “I, George.A.Vadakkel hereby declare that no part of the dissertation in part or full is used in any other documentation submitted for a degree or qualification in this or any other institute or University. -3- ACKNOWLEDGMENT I thank god for his blessings and for bringing me to this point in life. I would like to express my gratitude towards my family and friends who have supported me throughout my studies. I thank my parents Mr Aby Vadakkel and Mrs Mary Vadakkel, my sister Mrs Anju and my wife Rose for their support and encouragement. I take this opportunity to thank my supervisor Dr S Olutunde Oyadiji for taking me under his wings, for his guidance and support and above all for his faith in me. I thank him for the countless hours that he had spent advising me on my research. I also thank him for his support and encouragement in securing the University Scholarship and the funding towards my living expenses My sincere gratitude and thanks to Ms. Beverley Knight, Ms Michelle Ringwood and other MACE administrative staffs for their tireless and proactive efforts in making my PhD run smoothly. I would like to acknowledge the financial, academic and technical support from the University of Manchester and its staff, particularly in the award of a Postgraduate Research Scholarship. I also would like to thank the Engineering and Physical Sciences Research Council (EPSRC), The Home Office, and The London Metropolitan Police, who had originally sponsored the project. -4- COPYRIGHT STATEMENT Copyright in text of this dissertation rests with the author. Copies (by any process) either in full, or of extras, may be made only in accordance with the instructions given by the author. Details may be obtained from the appropriate graduate office. This page must form part of any copies made. Further copied (by any process) of copies made in accordance with such instructions may not be made without the permission (in writing) of the author. The ownership of any intellectual property rights which may be described in this dissertation is vested in The University of Manchester, subject to any prior agreement to the contrary, and may not be made available for use by third parties without written permission of the University, which will prescribe the terms and condition of any such agreement. Further information on the condition under which disclosure and exploitation may take place is available from the Head of the School of Mechanical, Aerospace and Civil Engineering. -5- CONTENTS LIST OF FIGURES LIST OF TABLES 1. INTRODUCTION ............................................................................. 24 1.1. Background .............................................................................................. 24 1.2. Aims and objectives ................................................................................. 25 1.3. Thesis overview ....................................................................................... 26 1.4. Original contributions to knowledge ......................................................... 29 1.5. Thesis structure ........................................................................................ 30 2. LITERATURE REVIEW ..................................................................... 33 2.1. Acoustic wave based CWD systems ........................................................ 33 2.2. Resonance acoustic spectroscopy ........................................................... 35 2.3. Imaging of concealed target using an acoustic camera ............................ 36 2.4. Millimetre wave based CWD systems ...................................................... 37 2.5. Terahertz wave based CWD systems ...................................................... 39 2.6. Back scattered X-Ray waves based CWD system ................................... 40 2.7. Magnetic field based CWD system........................................................... 42 2.8. Infrared based CWD systems .................................................................. 43 2.9. CWD using data fusion ............................................................................. 43 2.10. Development of parametric arrays for CWD system ................................ 44 2.11. Summary .................................................................................................. 45 3. THEORETICAL BACKGROUND ......................................................... 46 3.1. Introduction .............................................................................................. 46 3.2. Resonance acoustic spectroscopy ........................................................... 46 3.3. Reflection coefficient ................................................................................ 47 3.4. Directional sound source using AM signals .............................................. 48 3.5. Time delay and sum beamforming algorithm for phased array speakers ................................................................................................... 50 -6- 3.6. Time delay and sum beamforming algorithm for acoustic camera ..................................................................................................... 51 3.7. Finite element simulations ........................................................................ 53 3.7.1. Acoustic wave equation ................................................................................. 53 3.7.2. Finite element discretisation .......................................................................... 54 3.8. Summary .................................................................................................. 55 4. FINITE ELEMENT SIMULATION OF RESONANCE ACOUSTIC SPECTROSCOPY ............................................................................. 56 4.1. Introduction .............................................................................................. 56 4.2. Description of the finite element simulations ............................................ 57 4.3. Mesh size ................................................................................................. 59 4.3.1. Numerical calculation..................................................................................... 59 4.3.2. Mesh convergence study ............................................................................... 60 4.4. Finite element models .............................................................................. 61 4.5. Results ..................................................................................................... 63 4.5.1. Modal analysis of the targets ......................................................................... 63 4.5.2. Sound pressure distribution ........................................................................... 70 4.5.3. Steady state Sine wave excitation ................................................................. 71 4.5.4. Chirp excitation .............................................................................................. 74 4.5.5. Continuous sinusoidal excitation at discrete frequencies: .............................. 75 4.5.6. Short pulse excitation and time gating the acoustic response ........................ 77 4.5.7. Short Time Fourier Transform of the acoustic response ................................ 78 4.6. Summary .................................................................................................. 83 5. EXPERIMENTAL TESTS TO DETECT ACOUSTIC SIGNATURE .............. 85 5.1. Introduction .............................................................................................. 85 5.2. Hardware and software ............................................................................ 86 5.2.1. Sensors and transducers ............................................................................... 86 5.2.2. Data acquisition hardware ............................................................................. 87 5.2.3. Softwares used .............................................................................................. 88 5.2.4. General layout ............................................................................................... 88 5.3. Measurement setup and targets ............................................................... 89 5.4. Testing the speakers ................................................................................ 91 -7- 5.4.1. Response from speakers ............................................................................... 91 5.4.2. Beam cross section area ............................................................................... 94 5.4.3. Acoustic beam characteristics ....................................................................... 94 5.5. Response from unconcealed targets ........................................................ 99 5.5.1. Short Time Fourier Transform of acoustic response ...................................... 99 5.5.2. Frequency Response Function .................................................................... 104 5.5.3. Wavelet Analysis ......................................................................................... 106 5.6. Response from concealed targets .......................................................... 110 5.6.1. Short Time Fourier Transform of acoustic response .................................... 110 5.6.2. Wavelet ....................................................................................................... 112 5.7. Summary ................................................................................................ 113 6. EXPERIMENTAL VERIFICATION OF RESONANCE ACOUSTIC SPECTROSCOPY FOR IDENTIFICATION OF TARGETS...................... 115 6.1. Introduction ............................................................................................ 115 6.2. Measurement setup................................................................................ 116 6.2.1. Equipment used........................................................................................... 116 6.2.2. Layout of the measurement setup ............................................................... 117 6.2.3. Excitation signals ......................................................................................... 118 6.2.4. The targets chosen for the experiment ........................................................ 119 6.2.5. Measurement of the natural frequencies of different targets ........................ 119 6.3. Results ................................................................................................... 120 6.3.1. Natural frequencies of targets ...................................................................... 120 6.3.2. Double differentiation and STFT of the acoustic reflections ......................... 123 6.3.3. Acoustic response spectrum from different targets ...................................... 126 6.3.4. RAS using chirp and pulse excitation signals ............................................... 129 6.3.5. Time gating the pulse response spectrum ................................................... 132 6.3.6. Extracting the natural frequencies of an intact composite plate target ........................................................................................................... 135 6.3.7. Comparing composite plates with and without delamination ........................ 138 6.3.8. Extracting the natural frequencies of knife targets ....................................... 141 6.3.9. Tests carried out on concealed targets ........................................................ 142 6.3.10. Concealed plate -1 under chirp excitation .................................................... 143 6.3.11. Concealed plate -1 under pulse excitation ................................................... 148 6.3.12. Concealed aluminium cylinder under chirp excitation .................................. 151 6.3.13. Concealed aluminium cylinder under pulse excitation .................................. 158 -8- 6.4. Summary ................................................................................................ 158 7. ACOUSTIC IMAGING .................................................................... 160 7.1. Introduction ............................................................................................ 160 7.2. Equipment .............................................................................................. 161 7.2.1. Speakers ..................................................................................................... 161 7.2.2. Excitation signal ........................................................................................... 162 7.2.3. Targets ........................................................................................................ 162 7.2.4. Acoustic camera .......................................................................................... 164 7.2.5. LMS Test Lab and Scadas front end ............................................................ 165 7.3. Measurement setup................................................................................ 165 7.4. Discussion of results .............................................................................. 166 7.4.1. Acoustic images generated using the electromechanical speaker .............. 166 7.4.2. Acoustic images generated using the audio spotlight speaker system ......................................................................................................... 168 7.5. Summary ................................................................................................ 175 8. INVESTIGATING DIFFERENT DESIGN PARAMETERS OF AN ULTRASONIC ARRAY USING NUMERICAL SIMULATIONS .............. 176 8.1. Introduction ............................................................................................ 176 8.2. Creating the FE models in Ansys ........................................................... 177 8.3. Creating the acoustic model in Abaqus .................................................. 178 8.3.1. Linear array ................................................................................................. 178 8.3.2. Curved array ................................................................................................ 180 8.4. Results from analyses of linear and curved arrays ................................. 183 8.4.1. Linear array with 100 elements and excitation from 2 kHz to 12 kHz .............................................................................................................. 183 8.4.2. Linear array with different number of transducer .......................................... 183 8.4.3. Curved array configurations ......................................................................... 185 8.4.4. Results from linear array 1 kHz to 5 kHz excitation frequencies ................... 186 8.4.5. Results from curved array simulated in Abaqus – 1 k to 20 kHz .................. 189 8.4.6. Results from curved arrays at 39 kHz excitation frequency .......................... 195 8.5. Analysis of different array parameters .................................................... 196 8.5.1. Introduction .................................................................................................. 196 8.5.2. Influence of inter element spacing on beam focusing properties .................. 197 -9- 8.5.3. Influence of the number of array elements N on beam properties ............... 200 t 8.5.4. Geometric versus acoustic focus and its effect on the characteristic of the acoustic beam .............................................................. 203 8.5.5. Influence of the frequency on the characteristics of the acoustic beam ........................................................................................................... 204 8.5.6. Summary ..................................................................................................... 205 8.6. Results with a target ............................................................................... 207 8.7. Summary ................................................................................................ 209 9. DESIGN AND TESTING OF TRANSDUCER ARRAYS ......................... 211 9.1. Introduction ............................................................................................ 211 9.2. Sensitivity of 400PT160 ultrasonic transceiver as a transmitter ............. 212 9.3. Sensitivity of 400PT160 ultrasonic transceiver as receiver .................... 213 9.4. Sound attenuation through different clothing materials .......................... 214 9.5. Design of parametric transducer arrays ................................................. 216 9.5.1. Ultrasonic transceiver array ......................................................................... 216 9.5.2. Acoustic transducer array ............................................................................ 220 9.6. Test setup for ultrasonic transducer array .............................................. 220 9.7. Test setup for sound pressure measurement along the length of the beam ............................................................................................ 223 9.8. Test setup for measuring the beam pattern and directivity ..................... 223 9.9. Results from the measurement of sound pressure at different distances from the array ......................................................................... 225 9.10. Results from beam directivity measurements ......................................... 226 9.11. Tests done to identify target using ultrasonic transducer array .............. 227 9.12. Summary ................................................................................................ 229 10. TARGET IDENTIFICATION USING NEURAL NETWORK ................... 230 10.1. Introduction ............................................................................................ 230 10.2. Neural Network ...................................................................................... 230 10.2.1. Architecture ................................................................................................. 230 10.2.2. Working principle ......................................................................................... 232 10.2.3. Performance of the neural network .............................................................. 232 10.3. Training data generation ........................................................................ 233 10.3.1. Training dataset D1 using beam equation.................................................... 233 -10-

Description:
weapons. Both the acoustic signature and RAS techniques look at the frequency spectra of the acoustic waves reflected by the concealed targets acoustic waves for the detection of concealed weapons. modulator superimposes the audio signal onto an ultrasonic carrier frequency wave [91,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.