ebook img

Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems PDF

216 Pages·2020·11.725 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems

Springer Aerospace Technology Runqi Chai Al Savvaris Antonios Tsourdos Senchun Chai Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems Springer Aerospace Technology The Springer Aerospace Technology series isdevoted tothe technology of aircraft and spacecraft including design, construction, control and the science. The books present the fundamentals and applications in all fields related to aerospace engineering. The topics include aircraft, missiles, space vehicles, aircraft engines, propulsion units and related subjects. More information about this series at http://www.springer.com/series/8613 Runqi Chai Al Savvaris (cid:129) (cid:129) Antonios Tsourdos Senchun Chai (cid:129) Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems 123 RunqiChai AlSavvaris Cranfield University Cranfield University Cranfield,Bedford, UK Cranfield,Bedford, UK AntoniosTsourdos Senchun Chai Cranfield University Schoolof Automation Cranfield,Bedford, UK Beijing Institute of Technology Beijing,China ISSN 1869-1730 ISSN 1869-1749 (electronic) SpringerAerospace Technology ISBN978-981-13-9844-5 ISBN978-981-13-9845-2 (eBook) https://doi.org/10.1007/978-981-13-9845-2 ©SpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Space vehicle trajectory planning has become increasingly important due to its extensive applications in industry and military fields. A well-designed trajectory is usuallyakeyforstableflightandforimprovedguidanceandcontrolofthevehicle. Hence, the aim of this research is usually to work on trajectory optimization, and then improve on one of the existing trajectory optimization methods in order to circumvent the limitations brought by the classic techniques. Thisbookpresentsthedesignofoptimaltrajectoryforspacemaneuvervehicles using optimal control-based techniques. It starts from a broad introduction and overviewtothreemainapproachestotrajectoryoptimization.Itthenfocusesonthe design of a novel hybrid optimization strategy, which incorporates an initial guess generatorwithanimprovedgradient-basedinneroptimizer.Further,ithighlightsthe developmentofmulti-objectivespacecraft trajectory optimizationproblems,witha particular focus on multi-objective transcription methods, and multi-objective evo- lutionary algorithms. Finally, the spacecraft flight scenario with noise-perturbed dynamics and probabilistic constraints is studied. New chance-constrained optimal controlframeworksaredesignedandvalidated.Thecomprehensiveandsystematic treatmentofpracticalissuesinspacecrafttrajectoryoptimizationisoneofthemajor features of the book, which is particularly suited for readers who are interested to learn practical solutions in spacecraft trajectory optimization. The book can also benefit researchers, engineers, and graduate students in fields of GNC systems, engineering optimization,applied optimal controltheory, etc. Theauthorshavecarefullyreviewedthecontentofthisbookbeforetheprinting stage. However, it does not mean that this book is completely free from any possibleerrors.Consequently,theauthorswouldbegratefultoreaderswhowillcall out attention on mistakes as they might discover. Cranfield, UK Runqi Chai Cranfield, UK Al Savvaris Cranfield, UK Antonios Tsourdos Beijing, China Senchun Chai May 2019 v Acknowledgements TheauthorswouldliketoexpresstheirsincereappreciationstoProf.YuanqingXia, Prof.GuopingLiu,andProf.PengShifortheirconstructivecommentsandhelpful suggestions with regards to the theoretical part of this book. The first author would like to thank other colleagues from center of cyber-physics systems, Cranfield University, for providing valuable comments. Without their support, the writing of the book would not have been a success. Also, we would like to thank all the staff in the autonomous systems research group,CranfieldUniversity,foreverythingtheyhavedonetomakethingseasierfor us throughout the preparation of this work. Finally, the authors would like to thank Cranfield University, School of Aerospace, Transport, and Manufacturing, and Beijing Institute of Technology, School of Automation, for giving us the support to make the work a reality. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Mission Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Skip Reentry Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Regional Reconnaissance . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Book Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Chapter Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Overview of Trajectory Optimization Techniques. . . . . . . . . . . . . . . 7 2.1 Spacecraft Trajectory Optimization Problems and Optimal Control Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Optimization Techniques and Applications. . . . . . . . . . . . . . . . . . 9 2.2.1 Gradient-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Evolutionary-Based Methods . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Convexification-Based Methods . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Dynamic Programming-Based Methods. . . . . . . . . . . . . . . 14 2.3 Multi-objective Trajectory Optimization Overview . . . . . . . . . . . . 14 2.3.1 Multi-objective Evolutionary Algorithms. . . . . . . . . . . . . . 15 2.3.2 Multi-objective Transcription Methods . . . . . . . . . . . . . . . 17 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Modeling of the Trajectory Optimization Problems . . . . . . . . . . . . . 27 3.1 Mathematical Formulation of the Problem . . . . . . . . . . . . . . . . . . 27 3.1.1 Continuous Dynamical Systems . . . . . . . . . . . . . . . . . . . . 28 3.1.2 Variable/Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Mission Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.4 Overall Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.5 Numerical Solution Approach. . . . . . . . . . . . . . . . . . . . . . 30 ix x Contents 3.2 SMV Trajectory Optimization Formulation . . . . . . . . . . . . . . . . . 31 3.2.1 Dynamic Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 SMV Initial and Terminal Constraints. . . . . . . . . . . . . . . . 34 3.2.3 Box Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.4 Trajectory Event Sequence. . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.5 Interior-Point Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.6 Skip Entry Path Constraints . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.7 Objective Functions for the Skip Entry Problem . . . . . . . . 36 3.2.8 Overall Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Discretization of the SMV Skip Entry Problem . . . . . . . . . . . . . . 37 3.3.1 Pseudospectral Discretization . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Mesh Refinement Strategy . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Initial Simulation Results and Case Studies . . . . . . . . . . . . . . . . . 40 3.4.1 Parameters Specification. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.2 Optimal Skip Hopping Results . . . . . . . . . . . . . . . . . . . . . 41 3.4.3 Analysis of Different Skip Hopping Scenarios. . . . . . . . . . 44 3.4.4 Sensitivity with Respect to Path Constraint . . . . . . . . . . . . 45 3.4.5 Finding Solution for n[4 Scenarios . . . . . . . . . . . . . . . . 48 3.4.6 Optimal Results for a Multiple Regional Reconnaissance Mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Performance Analysis of Different Optimization Strategies. . . . . . . . 55 4.1 General NLP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Applying Gradient-Based Optimization Methods . . . . . . . . . . . . . 56 4.2.1 Sequential Quadratic Programming. . . . . . . . . . . . . . . . . . 56 4.2.2 Interior Point Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Heuristic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Constraint-Handling Method. . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Genetic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Differential Evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.4 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . 62 4.3.5 Artificial Bee Colony. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Problem Modification and Parameter Specification. . . . . . . 63 4.4.2 Combine Global Methods with Discretization Scheme. . . . 64 4.4.3 Optimal Solutions Obtained via Different Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 Analysis of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5.1 Characteristic Arcs of the Trajectory. . . . . . . . . . . . . . . . . 66 4.5.2 Performance of Different Optimization Methods . . . . . . . . 68 Contents xi 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Hybrid Optimization Methods with Enhanced Convergence Ability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 Initial Guess Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.1 Violation Learning Differential Evolution Algorithm . . . . . 74 5.2 Inner Optimization Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.1 An Improved Gradient-Based Optimization Strategy . . . . . 77 5.2.2 Mesh Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.3 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Solution Optimality Verification . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.1 First-Order Necessary Conditions . . . . . . . . . . . . . . . . . . . 81 5.3.2 Terminal Transversality Conditions. . . . . . . . . . . . . . . . . . 82 5.3.3 Hamiltonian Function Condition. . . . . . . . . . . . . . . . . . . . 83 5.3.4 Properties of the Control Variable. . . . . . . . . . . . . . . . . . . 84 5.3.5 Bellman’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 Simulation Results for a Time-Optimal Entry Scenario . . . . . . . . . 85 5.4.1 Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.2 Verification of Optimality . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.3 Comparison with Existing Evolutionary Solvers . . . . . . . . 90 5.4.4 Dispersion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.5 Comparison Against Other Optimal Control Solvers . . . . . 94 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Multi-objective Trajectory Optimization Problem. . . . . . . . . . . . . . . 99 6.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.1 General Formulation of Multi-objective Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.1.2 Multi-objective Optimal Control Problems . . . . . . . . . . . . 101 6.2 An Improved Multi-objective Evolutionary Algorithms. . . . . . . . . 101 6.2.1 Extended NSGA-II Algorithm . . . . . . . . . . . . . . . . . . . . . 101 6.2.2 Superiority of Feasible Solution Method . . . . . . . . . . . . . . 103 6.2.3 Penalty Function Based Method . . . . . . . . . . . . . . . . . . . . 105 6.2.4 Multi-objective Constraint-Handling Technique . . . . . . . . . 105 6.2.5 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 106 6.3 Multi-objective Transcription Methods. . . . . . . . . . . . . . . . . . . . . 106 6.3.1 Fuzzy Physical Programming . . . . . . . . . . . . . . . . . . . . . . 107 6.3.2 Interactive Fuzzy Physical Programming. . . . . . . . . . . . . . 109 6.3.3 Fuzzy Goal Programming Method . . . . . . . . . . . . . . . . . . 111 6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.1 Multi-objective SMV Trajectory Planning. . . . . . . . . . . . . 114 6.4.2 Pareto Front Results Obtained Using MOEAs . . . . . . . . . . 115

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.