COGGING TORQUE, TORQUE RIPPLE AND RADIAL FORCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MACHINES A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Mohammed Rakibul Islam May, 2009 COGGING TORQUE, TORQUE RIPPLE AND RADIAL FORCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MACHINES Mohammed Rakibul Islam Dissertation Approved: Accepted: _______________________ _______________________ Advisor Department Chair Dr. Iqbal Husain Dr. Alexis De Abreu-Garcia _______________________ _______________________ Committee Member Dean of the College Dr. Tom Hartley Dr. George K. Haritos _______________________ _______________________ Committee Member Dean of the Graduate School Dr. Igor Tsukerman Dr. George R. Newkome _______________________ _______________________ Committee Member Date Dr. Graham Kelley _______________________ Committee Member Dr. Kevin Kreider ii ABSTRACT This dissertation presents a methodology for designing low noise small permanent magnet synchronous motor (PMSM) drives by addressing the issues of cogging torque, torque ripple, acoustic noise and vibration. The methodology incorporates several pole shaping and magnet skew schemes in different motor topologies with similar envelop dimensions and output characteristics intended for an automotive application. The developed methodology is verified with finite element analysis (FEA) and experiments. A comprehensive design methodology has been developed for obtaining the analytical design of the machine for a given set of output characteristics. Using the FEA, the effects of various magnet shapes and skew arrangements on the machine performances (e.g. cogging torque, torque ripple etc.) have been analyzed. The FEA and experimental results show that for certain magnet designs and configurations the skewing does not necessarily reduce the ripple in the electromagnetic torque, but may cause it to increase. An analytical model to predict radial vibration due to magnetic radial pressure on the motor structure has also been developed. This model is used for predicting the noise power level for several motor topologies designed for similar power level applications. iii The predicted noise levels are utilized to develop guidelines for selecting motor configurations, internal dimensions and winding types for a low-noise PMSM. The selection of low-noise PMSM is not a straightforward one; rather it is a compromise between torque harmonics and radial vibration of the machine. Some PMSM configurations with less radial vibration might posses excessive torque ripples and thereby violate other requirements to be less noisy. Experiments are conducted to record the torque ripple variation for different magnet shapes and skew in order to validate the results of FE models. The experimental results correlated well with the FE computations. iv ACKNOWLEDGEMENTS My sincere gratitude to Dr. Iqbal Husain without whose ardent initiatives, constant compassionate advice and astute guidance this research work would not have materialized. Also I would like to thank all of the Committee Members for their excellent suggestions for making this research a success. The financial support of The University of Akron during my research period is also highly appreciated. The support of TRW Automotive Sterling Heights Division in fabricating the two PMSM designs used in the experiments is highly appreciated. I would also like to thank my parents, my wife Ayesha, my son Areeb, my lab mates and my brothers and sisters for their invaluable love and encouragement over the years. v TABLE OF CONTENTS Page LIST OF TABLES.............................................................................................................xi LIST OF FIGURES..........................................................................................................xii CHAPTER I. INTRODUCTION..........................................................................................................1 1.1 Classification of PM Machines......................................................................2 1.1.1 Common Types of Permanent Magnets..........................................5 1.2 Advantages of PMSM....................................................................................7 1.3 Basic PMSM Operation.................................................................................8 1.4 Application of PMSMs..................................................................................9 1.5 Scope of PMSM Design...............................................................................10 1.5.1 Noise and Vibration Issues ..........................................................11 1.5.2 Torque Ripple Issues ....................................................................13 1.5.3 PMSM Design...............................................................................15 1.6 Research Objectives.....................................................................................16 1.7 Dissertation Organization............................................................................17 II. PMSM TORQUE RIPPLE, NOISE AND VIBRATION...........................................20 2.1 PMSM Structure..........................................................................................20 2.2 PMSM Drive System...................................................................................21 vi 2.3 PMSM d-q Model........................................................................................23 2.4 Principle of Operation..................................................................................26 2.5 Noise and Vibration in PMSM....................................................................31 2.5.1 Electromagnetic ...........................................................................31 2.5.2 Mechanical....................................................................................32 2.5.3 Aerodynamic ................................................................................33 2.6 Improving Torque Ripple, Noise and Vibration..........................................35 2.6.1 Design Based Methods ................................................................36 2.6.2 Control Based Methods ................................................................49 2.7 Shortcomings in Existing Research.............................................................50 2.8 Research Motivation....................................................................................51 2.9 Research Objectives.....................................................................................53 2.10 Conclusions..................................................................................................54 III. COMPREHENSIVE DESIGN METHODOLOGY..................................................55 3.1 Design Methodology....................................................................................56 3.2 Design Steps.................................................................................................60 3.2.1 Design Ratios ...............................................................................60 3.2.2 Envelope Sizing ...........................................................................63 3.2.3 Stator and Rotor Sizing ................................................................64 3.2.4 RMS Current Density ..................................................................65 3.2.5 Computation of Maximum Number of Turns in the Slot.............66 3.2.6 Calculation of Maximum Demagnetization Current I ..........67 demag 3.2.7 Choice of Magnet and Magnet Thickness l ...............................67 m vii 3.2.8 Computation of Phase Resistance ................................................71 3.2.9 Number of Phases and Slot/Pole Combinations ..........................72 3.2.10 Example Design ...........................................................................74 3.2.11 Critical Issues ...............................................................................77 3.3 Design Data of PMSM.................................................................................81 3.4 Conclusions..................................................................................................84 IV. TORQUE RIPPLE AND COGGING TORQUE ANALYSIS..................................85 4.1 Torque Ripple and Cogging Torque............................................................86 4.2 BEMF and Torque Ripples..........................................................................87 4.3 PMSM Design Choices................................................................................90 4.3.1 Magnet Shapes .............................................................................91 4.3.2 Geometry Selection .....................................................................93 4.4 Torque Variation with Design Choices .......................................................94 4.4.1 Cogging Torque Variation with Configurations ..........................94 4.4.2 Effect of Magnet Shapes ..............................................................95 4.4.3 Average Torque Variation ...........................................................98 4.5 Torque Variation with Magnet Skewing......................................................99 4.5.1 Cogging Torque Reduction ........................................................100 4.5.2 Step Skewing .............................................................................100 4.5.3 Cogging Torque Results ............................................................101 4.6 Skewing with Variation in Magnet Shapes................................................103 4.7 BEMF and Torque Ripple Harmonics ......................................................107 4.7.1 Effect of Saturation ....................................................................111 viii 4.8 Simulation and Experimental Results .......................................................115 4.9 Conclusions ...............................................................................................118 V. RADIAL FORCE AND VIBRATION ANALYSIS................................................119 5.1 Radial Force, Stator Vibration, and Acoustic Noise .................................119 5.2 Unbalanced Radial Forces in Modular Machines .....................................121 5.3 Radial Force Density .................................................................................123 5.3.1 Calculation of Radial Pressure ...................................................127 5.4 Radial Vibration and Dominant Mode Shapes .........................................129 5.4.1 Radial Pressure and Mode Shapes under No-load Conditions ....................................................................................131 5.4.2 Radial Pressure and Mode Shapes under Full-load Conditions ....................................................................................134 5.4.3 Mode Shapes and Radial Force under No-load and Full-load Conditions ....................................................................139 5.5 Radial Displacement .................................................................................142 5.5.1 Analytical Model .......................................................................142 5.5.2 Estimation and Validation of Radial Displacement ...................146 5.6 Vibration and Noise due to Radial Displacement .....................................151 5.6.1 Condition of Maximum Vibration .............................................152 5.6.2 Calculation of Natural Mode Frequency ....................................153 5.6.3 Acoustic Noise and Sound Power Level ....................................155 5.7 Conclusions ...............................................................................................157 VI. SUMMARY AND FUTURE WORK.....................................................................159 6.1 Summary ...................................................................................................159 6.1.1 Research Contributions ..............................................................161 ix 6.2 Future Works ............................................................................................163 REFERENCES................................................................................................................165 APPENDICES.................................................................................................................170 APPENDIX A. GLOSSARY OF SYMBOLS ..................................................171 APPENDIX B. SEVERAL WINDING TOPOLOGIES ..................................175 APPENDIX C. CANCELLATION OF EVEN HARMONICS IN TORQUE FOR A 3-PHASE PMSM .....................................178 APPENDIX D. TYPICAL B-H CHARACTERISTICS OF LAMINATION STEEL ..........................................................181 APPENDIX E. DIFFERENTIAL EQUATION OF VIBRATION MODEL....................................................................................182 APPENDIX F. SOUND POWER LEVELS IN dB FOR SOME COMMON NOISE SOURCES................................................184 APPENDIX G. SCHEMATICS OF A TYPICAL ELECTRIC POWER STEERING SYSTEM .............................................185 x
Description: