RIC F.rames DESIGN OF REINFORCED CONCRETE STRUCTURES Volume 2 MashhourAhmed Ghoneim Professor of Concrete Structures Cairo University Mahmoud Tharwat EI-Mihilmy Associate Professor of Concrete Structures Cairo University Second Ec:Jition ·2008 PREFACE Teaching reinforced concrete design, carrying out research relevant to the behavior of reinforced concrete members, as well as designing concrete structures motivated the preparation of this book. The basic objective of this book is to furnish the reader with the basic understanding of the mechanics and design of reinforced concrete. The contents of the book conform to the latest edition of the Egyptian Code for the Design and Construction of Concrete Structures ECP~203. The authors strongly recommend that the Code be utilized as a companion publication to this book The book is aimed at two different groups. First, by treating the material in a logical and unified form, it is hoped that it can serve as a useful text for undergraduate and graduate student courses on reinforced concrete. Secondly, as a result of the continuing activity in the design and construction of reinforced concrete structures, it will be of value to practicing structural engineers. Numerous illustrative examples are given, the solution of which has been supplied so as to supplement the theoretical background and to familiarize the reader with the steps involved in actual design problem solving. ill writing the book, the authors are conscious of a debt to many sources, to friends, colleagues, and co-workers in the field. Finally, this is as good a place as any for the authors to express their indebtedness to their honomble professors of Egypt, Canada and the U.S.A. Their contributions in introducing the authors to the field will always be remembered with the deepest gratitude. This volume contains the following chapters • Solid slabs • Hollow block slabs • Paneled beams • Flat slabs • Reinforced concrete stairs • Short columns • Eccentric sections • Slender columns • Reinforced concrete Frames It also includes appendices containing design aids. TABLE OF CONTENTS 1. SOLID SLABS 1.1 Introduction ............................................................................................ '" ........ 1 1.2 One-Way Solid Slabs ............................................................................ ·. ............ 2 1.2.1 Definition .. ;. ............................. ~ ................................................................ 2 1.2.2 Structural Behavior. ................................................................................... 3 1.2.3 Effective Span ........................................................................................... 4 1.2.4 Minimum Thickness .................................................................................. 5 1.2.5 Bending moments ...................................................................................... 6 Example 1.1 ....................................................................................................... 8 1.3 Two-Way Slabs ................... ,. ............................................................................ 13 1.3.1 Definition .................................................................................................. 13 1.3.2 Elastic Analysis of Plates .......................................................................... 13 1.3.3 Load Distribution Factors According to ECP 203 ..................................... 16 1.3.4 Minimum Thickness .................................................................................. 18 1.3.5 Related Code Provisions ............................................................................ 19 1.3.6 Comer Reinforcement ............................................................................... 21 Example 1.2 ....................................................................................................... 22 2. HOLLOW BLOCK SLABS 2.1 Introduction ................................................................. ~ ............................................ 29 2.2 One-Way Hollow Block Slabs .................................................................................. 31 2.2.1 GeneraL .................................................................................................... 31 2.2.2 Arrangement of blocks .............................................................................. 32 2.2.3 Code Provisions ........................................................................................ 35 2.2.4 Design of One-way Hollow Block Slabs ................................................... 36 2.2.4.1 Design of Ribs ................... ·. ............................................................ 36 2.2.4.2 Design of Hidden Beams ............................................................... 38 Example 2.1 ....................................................................................................... 40 2.3 Two-Way Hollow Block Slabs ............................................................................ :. ... 51 2.3.1 Method of Analysis ................................................................................... 53 2.3.2 Design oftwo-way hollow slabs with projected beams ............................. 53 2.3.2.1 Design of ribs .............................................· . .................................. 53 2.3.2.2 Design of Projected beams ............................................................. 54 Example 2.2 ....................................................................................................... 58 ii 3. PANELED BEAMS 5. REINFORCED CONCRETE STAIRS 3.1 Introduction .............................................................................................................. 70 5.1 Introduction .............................................................................................................. 174 :C ....................................... 3.2 Load Distribution ............................................................ 72 5.2 Structural Systems of Stairs ...................................................................................... 177 3.3 Code Provisions .................................................................................................· . ...... 75 5.2 Cantilever Type ........................................................................................................ 178 304 Simplified Design Method ........................................................................................ 76 Example 5.1 ....................................................................................................... 181 3.5 Design of Skew Paneled Beams ................................................................................ 81 5.3 Slab Type .....................................................................~ ........................................ 194 Example 3.1 ....................................................................................................... 82 Example 5.2 ....................................................................................................... 198 Example 5.3 ....................................................................................................... 207 4. FLAT SLABS 6. SHORT COLUMNS SUBJECTED TO CONCENTRIC 4.1 Introduction .............................................................................................................. 102 4.2 Statical Equilibrium of Flat Slabs ............................................................................. 104 COMPRESSION 4.3 Minimum Dimensions According to ECP 203 .......................................................... 105 6.1 Introduction .............................................................................................................. 223 404 Analysis of Flat Slabs ............................................................................................... 108 6.2 Axially Loaded Tied Columns .................................................................................. 224 4.5 Direct Design Method ............................................................................................... 108 6.2.1 Behavior and Strength ........................................... · .. · ............. ·· .. ·· .. · .......... 224 4.5.1 Limitation ofthe direct method ................................................................. 108 6.2.2 Code Provisions for Tied Columns ........................................................... 226 4.5.2 Definition of colunm strip and field strip .................................................. 108 6.2.3 Splicing of Vertical Reinforcement .......................... ··· .... ··· .. ··· .. ····· .. ··· ...... 229 4.5.3 Calculation of slab load ............................................................................. 108 Example 6.1 .................................................................. · .. ···· .. · ........................... 232 4.504 Statical Moment Mo .................................................................................. 11 0 Example 6.2 .................................................................. · .. · .. ·· .. · .... ·· .................... 234 4.5.5 Distribution of the Statical Moment .....•.................................................... 111 6.3 Axially Loaded Spiral Colun1ns ................................................................................ 235 4.5.6 Moment Correction ................................................................................... 114 6.3.1 Behavior and Strength ............................................ ····.· .. ··· .... · .. ·· ............... 235 4.5.7 Provision for Pattern Loading .................................................................... 115 6.3.2 Minimum Spiral Reinforcement .............................. · .. ············· .. ·· .............. 237 4.5.8 Design Steps According to the Direct Design Method .............................. 115 6.3.3 Code Provisions for Spiral Columns ......................................................... 239 4.6 Reinforcement of Flat Slabs ...................................................................................... 116 Example 6.3 ....................................................................................................... 241 4.6.1 General. ..................................................................................................... 116 Example 604 ....................................................................................................... 243 4.6.2 Column Head Reinforcement ....................................... ~ ............................ 120 604 Design of Composite Columns ........................................................: .. ;. .................... 245 4.6.3 Reinforcement at Openings in Flat Slabs .................................................. 121 604.1 Design Guidelines ..... , ............................................................................... 245 4.7 Punching Shear Strength of Flat Slabs ...................................................................... 122 Example 6.5 ....................................................................................................... 252 4.7.1 General. ........................................................................... ;. ........................ 122 Example 6.6 ....................................................................................................... 254 4.7.2 Critical Sections ........................................................................................ 123 Example 6.7 ....................................................................................................... 257 4.7.3 Concrete Punching Shear Strength ............................................................ 125 6.5 Calculation of Axial Loads on Columns ................................................................... 259 4.704 Detailed Analysis ...................................................................................... 126 6.5.1 Area Method ............................................................................................. 259 4.704.1 Introduction ................................................................................... 126 6.5.2 Reaction Method ............................................ ··· .. ·· .. ··· .. ·· .... · ...................... 261 4.704.2 Calculations ofthe Punching Stresses ............................................ 126 4.7.5 Simplified Method .................................................................................... 131 4.8 One-Way Shear Strength .......................................................................................... 133 7. DESIGN OF SECTIONS SUBJECTED TO ECCENTRIC Example 4.1 ....................................................................................................... 134 Example 4.2 ....................................................................................................... 147 FORCES Example 4.3 ................................ , ................ ~ ..................................................... 162 Example 4.4 ....................................................................................................... 163 7.1 Introduction .............................................................................................................. 262 4.9 The Equivalent Frame Method ........................................................................· . ......... 165 7.2 Interaction Diagrams ..................................................... ··· .. ·· .. ·· ................................. 264 . 4.9.1 Introduction ...............................•............................................................... 165 7.2.1 Definition ................................................................................................... 264 4.9.2 Structural.Analysis .................................................................................... 165 7.2.2 Modes of Failure ........................... : ........................................................... 265 Example 4.5 ;. ..................................................................................................... 170 7.2.3 Development of the Interaction Diagram ................................................... 267 4.10 Computer Model of Flat Slabs ........... ; .................................................................... 172 iv iii 7.2.4 Plastic Centroid ......................................................................................... 270 8. SLENDER COLUMNS Example 7.1 ............................ '. ................................................... :. ..................... 271 Example 7. 2 ...................................................................................................... 273 8.1 Definition of Slender Colurrms ................................................................................. 369 Example 7.3 ....................................................................................................... 274 82 Classification of Buildings ................................ ····· .. ······ ........................................... 372 7.3 Sections SubjecttoEccentric Compression Forces ..........................................•........ 281 8:3 Braced and Unbraced Colurrms ..................................... ··········· ................................. 375 7.3.1 Design Ul!ing mteraction Diagrams ............................................... : ........... 282 8.4 Slenderness Considerations in the Egyptian Code ............................. ·:··················· ... 376 Example 7.4 ........................................................ , .............................................. 286 8.4.1 Code Definition of Slender Colurrms ............. ; .......................................... 376 7 .3.2Design Using MUS Approach ................................................................... 288 8.4.2 Unsupported Height ofa Compression Member (Ho) ............................... 377 Example 7.5 ....................................................................................................... 292 8.4.3 Effective Height ofa Compression Member (He) ..................................... 378 7.3.3 Design Curves For Eccentric Sections ....................................................... 294 8.5 Design Moments in Slender Braced Colurrms .................... ;. .......... ················ ........... 383 Example 7.6 ....................................................................................................... 296 8.5.1 Calculation ofthe Additional Moments ..................................... ·········· ...... 383 7.4 Sections Subjected to Eccentric Tension Forces ....................................................... 299 8.5.2 Design Moments ....................................................................................... 384 7.4.1 Sections Subject to Small Eccentric Tension Forces ..................... ;. .......... 300 8.6 Design Moments in Unbraced Slender Colurrms ...................................... ·········· ....... 387 Example 7.7 ....................................................................................................... 301 8.6.1 Additional moment ...... , ........... : ................................................................ 387 7.4.2 Sections Subjected to Big Eccentric TensionForces ................................. 303 8.6.2 Design moments ........................................................................................ 387 Example 7.8 .......................................................................... ~ ........................... 304 !:l \\\: 7.5 T-Sections Subjected To Eccentric Forces ................................................................ 305 §i~ ~l Example 7.9 ....................................................................................................... 306 Example 7.10 ..................................................................................................... 308 \\\\)\\\\i\\\\:: \:\ \\: \\ \\\ \\\ \: \\\\\)::\::\\) \:\\) \\\ \\: \:\:::\::: \\\::\ )\\\ \ Example 7.11 .................................. ~ ................................................................... 310 H: 7.6 Analysis of Irregular Sections ................................................................................... 312 7.6.1 General. ..................................................................................................... 312 7.Q.2 Strength of Shear Walls ............................................................................. 313 9. REINFORCED CONCRETE FRAMES Example 7.12 ..................................................................................................... 315 7.7 mteraction Diagrams For Circular Colurrms ............................................................. 320 9.1 Introduction .............................................................................................................. 419 Example 7.13 .................................................................................................•... 323 9.2 Definition of the Frame ............................................................................................. 420 Example 7.14 ..................................................................................................... 325 9.3 The Choice of the Type ofthe Frame .......................................... ······· ...................... .422 Example 7.15 ..................................................................................................... 327 9.4 Lay~ut of a Hall Supported by RIC Frames ............................................................. .425 7.8 mteraction Diagrams For Box Sections .................................................................... 329 9.5 Reinforcement Detailing of Rigid Frames ..................................... ············ ............... .427 Example 7.16 ..................................................................................................... 331 9.6 HinE:'T:TI::::::::::::::::::::::::::::::::::::::::::'::.::':::::.::::::::~i 7.9 Colurrms Subjected to Biaxial Bending ..................................................................... 334 7.9.1 General ...................................................................................................... 334 7.9.2 Exact Analysis of Biaxial Bending ............................................................ 335 7.9.3 Minimum Eccentricity for Biaxially Loaded Columns .............................. 343 APPENDICES Example 7.17 ..................................................................................................... 344 7.9.4 Biaxial mteraction Diagrams ..................................................................... 345 Appendix A Design Charts for Sections Subjected to Flexure ...................................... .465 7.9.5 The use of Biaxial Interaction Diagrams ................................................... 345 Appendix B mteraction Diagrams Top and bottom steel ...................................... ···· .. ··.47 3 Example 7.18 ..................................................................................................... 347 Appendix C mteraction Diagrams Uniform steeL ................. : ............................. · ........ 522 7.9.6 ECP-203 Design Procedure for Biaxial Bending ....................................... 349 Appendix D Design Charts for Sections Subjected to EccentrIC Forces ......................... 535 Example 7.19 ..................................................................................................... 353 Appendix E Interaction Diagrams for Circular S.ections ...... : .................................... :. ... 560 7.9.7 Biaxial Bending in Unsymmetrically Reinforced Sections ........................ 355 Appendix F Interaction Diagrams for Hollow ~lrcular SectlOns ................................... 573 Example 7.20 ...................................................................................................... 359 .A ppendix G Interaction Diagrams for Box SectlOns ..............: ....................................... 581 7.9.8 Circular Colurrms under Biaxial Bending .................................................. 362 Appendix H Interaction Diagrams for Biaxially Loaded SectlOns ................................. 586 Example 7.21 ..................................................................................................... 363 Appendix I Interaction Diagrams for L-Sections ............................... ············· .............. 615 7.9.9 mteraction Diagrams for L-Sections .......................................................... 365 v vi 1 SOLID SLABS Photo 1.1 Burj Dubai during construction (2007)~ ______ 1.1 Introduction Reinforced concrete solid slabs are used in floors, roofs and as decks of bridges as shown in Photo 1.1. Slabs may span in one direction or in two directions depending on the slab dimensions and the· surrounding supporting elements. Slabs spanning in one direction are referred to as one-way slabs while those spanning in two directions are referred to as two-way slabs. 1.2.2 Structural Behavior 1.2 One-Way Solid Slabs The direction in which the slab bends is called the main direction as shown in Fig 1.1. 1.2.1 Definition The main reinforcement is placed in this direction as illustrated in Fig. 1.2. For a one-way slab supported on four beams like the one shown in Fig. 1.2, the strip One-way solid slab~ are extensively used in buildings, especially for spans less than 4 near the middle acts as a one-way slab. However, at the slab parts near the edges, meters. To be classified as a one-way slab, the ratio of the long side to the short side some of the load is transferred in the longitudinal direction producing a two-way slab of the slab panel must exceed 2. They are referred to as one-way slabs because the action. Thus, top reinforcement should be added on each side of the girder to account bending is mainly in the short direction. Typically, a 1m wide strip of the slab is for this action. If this reinforcement is ignored, wide cracks may develop on the top of analyzed and the reinforcement required for this strip is used in all parts ofthe slab. the slab along edges (A-B) and (A'-B') cantilever slabs main direction r 7 Secondary reinforcement Main reinforcement direction direction / I " ~ I I ! -I .-._._. --I- ---------------1 I I iiiI ~S&1<>:. ' '9E8.<.:. t '!Iii. .'E5" ·'g<<~8>: t IIii A I i i i ! --- i ! I I beams i I i i <= i .S .g I iI 'E" '<~8> t iI i I Fig. 1.2 Structural action of one-way slabs .. ! I ... ... --- -_. ... main direction I ~ I ! i .. I main i i <= i direction i i ... .5·g i The load transferred to the perpendicular direction is almost equal to zero except near '" <> I I secondary E ~ t I the edge beams (Beams AB and A'Bl Thus, a secondary mesh is required in this i I - '8 I direction direction (as shown in Figs. 1.2 and 1.3) to carry this small portion and to keep the ~~. ·1 ~ main reinforcement in place. Also, the secondary reinforcement is place.d to control cracks produced by shrinkage or temperature changes and to help in distribl,lting I I concentrated loads transversely. Fig. 1.1 One-way slabs 3 2 1.2.4 Minimum Thickness The depth of solid slabs is usually controlled by deflection rather than flexural strength requirements. The ECP-203 gives the minimum thickness for one-way slabs reinforced with high grade steel in which the deflection calculations can be ignored as listed in Table 1.1. Table 1.1 (Loft)< ratios for members spanning less than 10 meters or cantilevers spanning less. than 2m ({y=400 N/mm2). (Deflection calculations can be ignored) a-Simply supported b-Coutiuuous Simply One end Two ends Cantilever Element Fig. 1.3 One-way slabs supported on two sides supported continuous continuous Solid slabs 25 30 36 10 It should be noted that if a slab panel is supported only on two sides, it would act as one-way slab regardless of the ratio Of the long side to the short side. Figures 1.3.a and Hidden Beams 1.3.b show examples of slabs act as one way because of having supporting beams on 20 25 28 8 and hollow blocks two sides only. .* Lo is the clear span. 1.2.3 Effective Span The values listed in Table (1.1) are valid when using high grade steel 400/600. In the The effective span (Lef!) for solid slabs is given by the follOwing equation case of using other types of reinforcing steel, the values mentioned in Table 1.1 should be divided by factor S, given by: Lelet" +t max of s Lef! = min of. {1.05xLc/",,, for simple or continuous slabs ...................... (1.1) {;o ................................. ;.. .................... { CLto CL (L) 4 = 0.40 + (1.2) Where.!;, is the yield strength of reinforcing steel in Nlrnm2• L . {Lei"'" eff = mIll 0i f edge +tot sC L (L) c~.o r canb'1 ever s Ia b s .............................................. (1.2) The code also provides an absolute minimum thickness for one-way slabs L 130 simple span tmin = L /35 continuous from one end ......................... (1.3) ~r.-.- -----L-cle-~----trl---.~ 1 L 140 continuous from two ends where L is the effective span In addition, the absolute minimum thickness should not be less than 80 mm for slabs i I i L i L subjected to static loads and 120 mm for slabs subjected to dynamic loads. The i • I aforementioned thickness can be reduced in case of prefabricated slabs. To satisfY serviceability requirements for corrosion and fire protection, the concrete cover should Continuous span Cantilever span not be less than 20mm. Fig. 1.4 Effective spans for solid slabs 5 4