ebook img

Design of a 16-bit 50-kHz Low-Power SC Delta-Sigma Modulator for ADC in 0.18um CMOS ... PDF

88 Pages·2016·3.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of a 16-bit 50-kHz Low-Power SC Delta-Sigma Modulator for ADC in 0.18um CMOS ...

UNIVERSITAT POLITÈCNICA DE CATALUNYA Design of a 16-bit 50-kHz Low-Power SC Delta-Sigma Modulator for ADC in 0.18um CMOS Technology MASTER THESIS IMB-CNMSupervisors: MicheleDei Author: FranciscoSerraGraells JoseCisnerosFernàndez UPCco-advisor: XavierAragonèsCervera Athesissubmittedinfulfillmentoftherequirements forthedegreeofMasterofElectronicEngineering inthe ETSETB EscolaTècnicaSuperiord’EnginyeriadeTelecomunicacióde Barcelona July10,2016 ii UNIVERSITATPOLITÈCNICADECATALUNYA ETSETB MasterofElectronicEngineering Designofa16-bit50-kHzLow-PowerSCDelta-SigmaModulatorfor ADCin0.18umCMOSTechnology JoseCisnerosFernàndez Abstract A general purpose 16 Bits Σ-∆ modulator ADC for double precision audio50kHzbandwidth,targetedforLow-poweroperation,involvingno additional digital circuit compensation, no bootstrapping techniques and resistor-less topologies, and relaying on Switched Capacitor Σ-∆ modula- tortopologiesforrobustoperationandinsensitivitytoprocessandtemper- aturevariations,ispresentedinthiswork. Designed in a commercial 180 nm technology, the whole circuit static current is calculated in 620 µA with a nominal voltage supply of 1.8 V, performing a Schreier FOM of 174.16 dB. This outstanding state-of-the-art forseen FOM is achieved by the use of architectural and circuital Low- power techniques. At the architectural level a single loop Low-distortion topologywiththeoptimumorderandcoefficientshavebeenchosen,while atcircuitlevelverynovelOTAbasedonVariableMirrorAmplifiersallows anefficientClass-ABoperation. Specially optimized switched variable mirror amplifiers with a novel design methodology based on Bottom-up approach, allows faster design stages ensuring feasable circuit performance at architectural level without the need of large iterative simulations of the complete SC Σ-∆ modula- tor. Simulationresultsconfirmsthecompleteoptimizationprocessandthe metionedadvantageswithrespecttothetradicionalapproach. KEY WORDS- 16 Bits, 50 kHz, Low-Power, Low-Distortion, No boostrapping, SwitchedCapacitorΣ-∆modulator. iii Acknowledgements Iowemygratitudetoallthosewhocontributedinsomewayinthere- alizationofthismasterthesis. Firstly, I would like to thank Dr. Francisco Serra Graells and Dr. Lluis Teres for the oportunity to develop my master thesis in the ICAS group at IMB-CNM. This Thesis would not have been possible without the guidance and the help of Dr.Michele Dei and Dr. Francisco Serra, from which I’m thankful fortheirpatience,motivation,andknowhow. Theirguidancehelpedmein allthetimeofdevelopmentandwritingofthisthesis. I would like to express my sincere gratitude to my advisor Dr. Xavier Aragones, which gives me the opportunity and the time I need to learn fromthisworldofelectronics,withoutexpectinganythinginreturn. IwouldliketoexpressmydeepestthankstoJoanAymerich,forbeingpart of this journey through the micro-electronics world and provide support and advice when needed. With no doubt its a pleasure to find people like you. LastbutnottheleastIwouldliketothankmyparentsandbrotherfortheir unending support and encouragement. Without their support this work wouldnothavebeenpossible. iv Contents Abstract ii Acknowledgements iii 1 Introduction 1 1.1 ADCFundamentals . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ADCarchitectures . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 State-of-the-artADCs . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Σ-∆ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Σ-∆ModulationBasics . . . . . . . . . . . . . . . . . 7 1.4.2 CTandDTΣ-∆Modulation . . . . . . . . . . . . . . 9 1.4.3 ClassificationofΣ-∆Modulators . . . . . . . . . . . 10 1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Designmethodologies . . . . . . . . . . . . . . . . . . . . . . 12 1.7 StructureoftheWork . . . . . . . . . . . . . . . . . . . . . . . 16 2 Measurements 17 2.1 Σ-∆performancemetrics . . . . . . . . . . . . . . . . . . . . 17 2.2 Σ-∆ModulatorexpectedPerformance . . . . . . . . . . . . . 19 2.3 Σ-∆TestVehicle. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 TestVehicleEquipment . . . . . . . . . . . . . . . . . 20 2.3.2 TestVehicleBoard . . . . . . . . . . . . . . . . . . . . 21 2.3.3 TestVehicleSoftware . . . . . . . . . . . . . . . . . . . 22 2.4 Σ-∆ModulatorMeasurements . . . . . . . . . . . . . . . . . 23 2.4.1 MeasurementProcedure . . . . . . . . . . . . . . . . . 23 2.5 MeasurementResults . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 HighlevelΣ-∆modelling 26 3.1 Σ-∆modulatortopologies . . . . . . . . . . . . . . . . . . . . 27 3.1.1 DistributedfeedbackΣ-∆modulator . . . . . . . . . 27 3.1.2 FeedforwardΣ-∆modulator . . . . . . . . . . . . . . 30 3.2 Σ-∆ModulatorTopologyElection . . . . . . . . . . . . . . . 32 3.3 CoefficientOptimization . . . . . . . . . . . . . . . . . . . . . 34 3.4 Mismatchrobustnesstest. . . . . . . . . . . . . . . . . . . . . 37 3.5 Settlingrobustnesstest . . . . . . . . . . . . . . . . . . . . . . 39 3.6 Clockjitterrobustnesstest . . . . . . . . . . . . . . . . . . . . 40 3.7 Referencenoiserobustnesstest . . . . . . . . . . . . . . . . . 41 3.8 Thermalnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Circuitleveldesign 44 4.1 SwitchedCapacitorΣ-∆Modulator . . . . . . . . . . . . . . 44 4.2 Modulatorbuildingblocks . . . . . . . . . . . . . . . . . . . . 50 4.2.1 PhaseSplitter . . . . . . . . . . . . . . . . . . . . . . . 50 v 4.2.2 Single-bitQuantizer . . . . . . . . . . . . . . . . . . . 51 4.2.3 SwitchedVariable-MirrorAmplifiers . . . . . . . . . 52 4.2.3.1 SwitchedVariable-MirrorAmplifiersprinci- pleofoperation . . . . . . . . . . . . . . . . 53 4.2.3.2 SwitchedVariable-MirrorTypes . . . . . . . 54 4.2.3.3 SwitchedVariable-MirrorSCimplementation 56 5 Circuitoptimizationandsimulationresults 58 5.1 SimulationTestbench . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.1 Switchesoptimizationprocess . . . . . . . . . . . . . 62 5.3 SwitchedVariableMirrorAmplifier . . . . . . . . . . . . . . 63 5.3.1 Designspaceandalternatives . . . . . . . . . . . . . . 63 5.3.2 Slewrateandlinearrelaxation . . . . . . . . . . . . . 65 5.3.3 SVMAType1Optimization . . . . . . . . . . . . . . . 66 5.3.4 SVMAType2Optimization . . . . . . . . . . . . . . . 68 5.3.5 2nd and3rd SVMAstages . . . . . . . . . . . . . . . . 71 5.4 SCΣ-∆Melectricalsimulations . . . . . . . . . . . . . . . . . 71 6 Conclusions 74 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References 76 vi List of Figures 1.1 ADC basic block diagram and Analog-to-Digital conversion process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 (A) 6-level quantizer characteristic and its quantization er- ror, (B) equivalence of the quantizer block diagram with its simplifiedlinearmodelaccountingfortheinjectionofauni- formlydistributedwhitenoise. . . . . . . . . . . . . . . . . . 3 1.3 Murmann survey of ADC performance: representation on theENOBversussignalbandwidthplane. . . . . . . . . . . . 5 1.4 Murmann survey of ADC performance: representation on theenergy-per-conversionversustheENOB. . . . . . . . . . 6 1.5 In-bandnoisepowerrepresentationsinthreedifferentcases: Nyquist-rateADC,oversampledADCandoversampledwith noiseshapingADC. . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 BasicsingleloopΣ-∆Modulatorblockdiagram. . . . . . . . 8 1.7 Discretetime(A)andContinuoustime(B)Σ-∆modulators blockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Design flow diagram adopted in this work. Design tasks havebeenmappedtotheirrespectivedesignenvironment. . 13 2.1 Typical Σ-∆ Modulator power spectral density with perfor- mancemetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Graphicalrepresentationofthemostimportantperformance metricsofΣ-∆ADC. . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 TestvehicleboardoftheΣ-∆ADCof[32]. . . . . . . . . . . 21 2.4 Σ-∆ModulatorPSDmeasurementoftheΣ-∆ADCof[32]. 22 3.1 DesignflowofHighlevelmodulatorimplementation. . . . . 27 3.2 L-thorderdistributedfeedbackΣ-∆Modulator. . . . . . . . 28 3.3 2nd orderdistributedfeedbackΣ-∆Modulator. . . . . . . . . 28 3.4 Transient simulation and signal distortion at integrator out- putsfora2nd orderdistributedfeedbackΣ-∆modulator. . . 30 3.5 L-thorderFeedforwardΣ-∆Modulator. . . . . . . . . . . . 30 3.6 2nd orderFeedforwardΣ-∆Modulator. . . . . . . . . . . . . 31 3.7 Transient simulation and signal distortion at integrator out- putsfora2nd orderfeedforwardΣ-∆modulator.. . . . . . . 32 3.8 Block diagram of the 3rd order feedforward Σ-∆ modulator developedinthiswork. . . . . . . . . . . . . . . . . . . . . . 34 3.9 Transientsimulationsandstatevariablesdistributionfortwo differentcandidatesofthegridsearchalgorithm. . . . . . . . 36 3.10 High level simulation results of 3rd order Σ-∆ modulator modelofthiswork. . . . . . . . . . . . . . . . . . . . . . . . . 37 3.11 Mismatchcoefficienttestresults. . . . . . . . . . . . . . . . . 38 3.12 SNDRdegradationasfunctionoftheintegratorsettlingerror. 39 vii 3.13 Graphical representation of a non-uniform sampling of a si- nusoidalsignalduetoclockjitter. . . . . . . . . . . . . . . . . 40 3.14 SNDRdegradationasfunctionofJitter. . . . . . . . . . . . . 41 3.15 Referencenoisetestresults. . . . . . . . . . . . . . . . . . . . 42 3.16 High level PSD-spectrum with (Grey) and without (Black) thermalnoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 InterleavedoperationofswitchedOpAmpsina3rd orderΣ- ∆ Modulator. This implementation modifies the loop trans- ferfunctioninawaythatmakethemodulatordysfunctional. Itisshownhereforillustrationpurposes. . . . . . . . . . . . 45 4.2 3rd order Σ-∆M SC based on switched OpAmps. Here the switched OpAmps blocks are labelled as SVMA accounting fortheswitchedvariablemirroramplifiers. . . . . . . . . . . 46 4.3 Rearrangement of half delays in a cascade of two half delay integrators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Σ-∆MSC-switchedOpAmpschematicduringφ . . . . . . 48 1−2 4.5 Σ-∆MSC-switchedOpAmpschematicduringφ . . . . . . 49 3−4 4.6 Σ-∆Mphasegenerator. . . . . . . . . . . . . . . . . . . . . . 50 4.7 Σ-∆Moperationchronogram. . . . . . . . . . . . . . . . . . . 51 4.8 Σ-∆modulatorsinglebitquantizer. . . . . . . . . . . . . . . 52 4.9 Σ-∆modulatorsinglebitquantizerwaveformrepresentation. 52 4.10 GeneralarchitectureoftheproposedVMA[33]. . . . . . . . . 53 4.11 Qualitativelarge-signalClass-ABoperation[33]. . . . . . . . 54 4.12 Type1Class-ABcurrentamplifier[33]. . . . . . . . . . . . . . 55 4.13 Type2Class-ABcurrentamplifier[33]. . . . . . . . . . . . . . 55 4.14 SVMAschematicduringoffphase(A)andonphase(B). . . 57 5.1 Reduced Testbench schematic used in the optimization pro- cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Differential output voltage waveforms during the integra- tion phase for input differential voltage ranging from 0 to -1V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Differential output voltage (Red) and its derivative (Yellow) representationobtainedfromFig.5.2. . . . . . . . . . . . . . . 60 5.4 HighlevelsimulationresultsfortwodesigncasesofFig.5.1. 61 5.5 SCΣ-∆modulatorfirststageschematicshowingrelevantis- suesregardingthesamplerswitches. . . . . . . . . . . . . . . 62 5.6 SC Σ-∆ modulator second and third stage schematic illus- tratingtheswitchedOpAmpactionontheswitchingscheme. 63 5.7 Qualitative transient response of the VMA differential out- putvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.8 Type 1 differential output voltage waveform with K = 4 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 67 tail 5.9 Type 1 differential output voltage waveform with K = 8 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 67 tail 5.10 Type1differentialoutputvoltagewaveformsforafixedVin DIFF stepof1VandI equalto150,100and50µA. . . . . . . . 68 tail 5.11 Type 2 differential output voltage waveform with K = 4 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 69 tail viii 5.12 Type2differentialoutputvoltagewaveformsforafixedVin DIFF stepof1VwithI of150µAandK equalto3,4and6.. 69 tail AB 5.13 Type 2 differential output voltage waveform with K = 4 AB andI = 100µA. . . . . . . . . . . . . . . . . . . . . . . . . . 70 tail 5.14 SCΣ-∆Melectricalsimulations(Cadence),whichrepresents 7 days of computing for 16 cycles with the ideal versions of the quantizer and the switching network, versus the maxi- mum of 20 minutes spent in the bottom-up approach (sim- plifiedCadencetestbenchandPythoncodesimulation). . . . 73 ix List of Tables 1.1 Initial specifications and characteristics of the Σ-∆ Modula- torofthisthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Σ-∆ModulatorSNDRsimulatedunderprocessandtemper- aturevariations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Σ-∆ModulatorSNDRmeasurementsacrosstemperature. . 24 3.1 Σ-∆ Modulator simulation time comparison on 12 GHz/24 CPUsx86_64machine. . . . . . . . . . . . . . . . . . . . . . . 26 3.2 SNDRpeakvalueforvariousΣ-∆Modulatorconfigurations, consideredinthiswork. . . . . . . . . . . . . . . . . . . . . . 33 3.3 ExtractedoutputsamplesoftheGridsearchalgorithm. . . . 35 3.4 Selected set of coefficients for the 3rd order Σ-∆ Modulator ofthiswork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Gaincoefficientsgeneratedforthemismatchsensitivitytest. 38 3.6 CapacitorsizingfortheSCΣ-∆M. . . . . . . . . . . . . . . . 43 5.1 CapacitorvaluesusedinFig.5.1. . . . . . . . . . . . . . . . . 59 5.2 SVMAcandidatesperformanceforK = 6andI = 200µA. 65 AB tail 5.3 Type1exploreddesignspace. . . . . . . . . . . . . . . . . . . 68 5.4 Type2exploreddesignspace. . . . . . . . . . . . . . . . . . . 70 5.5 2nd and3rd SVMAstagesscaledown. . . . . . . . . . . . . . 71 5.6 Simulated dynamic current consumption of each SC Σ-∆M implementedforbothSVMAtypes. . . . . . . . . . . . . . . 71 5.7 SCΣ-∆MType2simulationacrosscorners. . . . . . . . . . . 72

Description:
A general purpose 16 Bits Σ-∆ modulator ADC for double precision audio 50 kHz additional digital circuit compensation, no bootstrapping techniques and .. In the case of ADCs there are two main FOMs which are the Walden .. block is described using Verilog-A to form the complete system. When.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.