UNIVERSITAT POLITÈCNICA DE CATALUNYA Design of a 16-bit 50-kHz Low-Power SC Delta-Sigma Modulator for ADC in 0.18um CMOS Technology MASTER THESIS IMB-CNMSupervisors: MicheleDei Author: FranciscoSerraGraells JoseCisnerosFernàndez UPCco-advisor: XavierAragonèsCervera Athesissubmittedinfulfillmentoftherequirements forthedegreeofMasterofElectronicEngineering inthe ETSETB EscolaTècnicaSuperiord’EnginyeriadeTelecomunicacióde Barcelona July10,2016 ii UNIVERSITATPOLITÈCNICADECATALUNYA ETSETB MasterofElectronicEngineering Designofa16-bit50-kHzLow-PowerSCDelta-SigmaModulatorfor ADCin0.18umCMOSTechnology JoseCisnerosFernàndez Abstract A general purpose 16 Bits Σ-∆ modulator ADC for double precision audio50kHzbandwidth,targetedforLow-poweroperation,involvingno additional digital circuit compensation, no bootstrapping techniques and resistor-less topologies, and relaying on Switched Capacitor Σ-∆ modula- tortopologiesforrobustoperationandinsensitivitytoprocessandtemper- aturevariations,ispresentedinthiswork. Designed in a commercial 180 nm technology, the whole circuit static current is calculated in 620 µA with a nominal voltage supply of 1.8 V, performing a Schreier FOM of 174.16 dB. This outstanding state-of-the-art forseen FOM is achieved by the use of architectural and circuital Low- power techniques. At the architectural level a single loop Low-distortion topologywiththeoptimumorderandcoefficientshavebeenchosen,while atcircuitlevelverynovelOTAbasedonVariableMirrorAmplifiersallows anefficientClass-ABoperation. Specially optimized switched variable mirror amplifiers with a novel design methodology based on Bottom-up approach, allows faster design stages ensuring feasable circuit performance at architectural level without the need of large iterative simulations of the complete SC Σ-∆ modula- tor. Simulationresultsconfirmsthecompleteoptimizationprocessandthe metionedadvantageswithrespecttothetradicionalapproach. KEY WORDS- 16 Bits, 50 kHz, Low-Power, Low-Distortion, No boostrapping, SwitchedCapacitorΣ-∆modulator. iii Acknowledgements Iowemygratitudetoallthosewhocontributedinsomewayinthere- alizationofthismasterthesis. Firstly, I would like to thank Dr. Francisco Serra Graells and Dr. Lluis Teres for the oportunity to develop my master thesis in the ICAS group at IMB-CNM. This Thesis would not have been possible without the guidance and the help of Dr.Michele Dei and Dr. Francisco Serra, from which I’m thankful fortheirpatience,motivation,andknowhow. Theirguidancehelpedmein allthetimeofdevelopmentandwritingofthisthesis. I would like to express my sincere gratitude to my advisor Dr. Xavier Aragones, which gives me the opportunity and the time I need to learn fromthisworldofelectronics,withoutexpectinganythinginreturn. IwouldliketoexpressmydeepestthankstoJoanAymerich,forbeingpart of this journey through the micro-electronics world and provide support and advice when needed. With no doubt its a pleasure to find people like you. LastbutnottheleastIwouldliketothankmyparentsandbrotherfortheir unending support and encouragement. Without their support this work wouldnothavebeenpossible. iv Contents Abstract ii Acknowledgements iii 1 Introduction 1 1.1 ADCFundamentals . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ADCarchitectures . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 State-of-the-artADCs . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Σ-∆ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Σ-∆ModulationBasics . . . . . . . . . . . . . . . . . 7 1.4.2 CTandDTΣ-∆Modulation . . . . . . . . . . . . . . 9 1.4.3 ClassificationofΣ-∆Modulators . . . . . . . . . . . 10 1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Designmethodologies . . . . . . . . . . . . . . . . . . . . . . 12 1.7 StructureoftheWork . . . . . . . . . . . . . . . . . . . . . . . 16 2 Measurements 17 2.1 Σ-∆performancemetrics . . . . . . . . . . . . . . . . . . . . 17 2.2 Σ-∆ModulatorexpectedPerformance . . . . . . . . . . . . . 19 2.3 Σ-∆TestVehicle. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 TestVehicleEquipment . . . . . . . . . . . . . . . . . 20 2.3.2 TestVehicleBoard . . . . . . . . . . . . . . . . . . . . 21 2.3.3 TestVehicleSoftware . . . . . . . . . . . . . . . . . . . 22 2.4 Σ-∆ModulatorMeasurements . . . . . . . . . . . . . . . . . 23 2.4.1 MeasurementProcedure . . . . . . . . . . . . . . . . . 23 2.5 MeasurementResults . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 HighlevelΣ-∆modelling 26 3.1 Σ-∆modulatortopologies . . . . . . . . . . . . . . . . . . . . 27 3.1.1 DistributedfeedbackΣ-∆modulator . . . . . . . . . 27 3.1.2 FeedforwardΣ-∆modulator . . . . . . . . . . . . . . 30 3.2 Σ-∆ModulatorTopologyElection . . . . . . . . . . . . . . . 32 3.3 CoefficientOptimization . . . . . . . . . . . . . . . . . . . . . 34 3.4 Mismatchrobustnesstest. . . . . . . . . . . . . . . . . . . . . 37 3.5 Settlingrobustnesstest . . . . . . . . . . . . . . . . . . . . . . 39 3.6 Clockjitterrobustnesstest . . . . . . . . . . . . . . . . . . . . 40 3.7 Referencenoiserobustnesstest . . . . . . . . . . . . . . . . . 41 3.8 Thermalnoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Circuitleveldesign 44 4.1 SwitchedCapacitorΣ-∆Modulator . . . . . . . . . . . . . . 44 4.2 Modulatorbuildingblocks . . . . . . . . . . . . . . . . . . . . 50 4.2.1 PhaseSplitter . . . . . . . . . . . . . . . . . . . . . . . 50 v 4.2.2 Single-bitQuantizer . . . . . . . . . . . . . . . . . . . 51 4.2.3 SwitchedVariable-MirrorAmplifiers . . . . . . . . . 52 4.2.3.1 SwitchedVariable-MirrorAmplifiersprinci- pleofoperation . . . . . . . . . . . . . . . . 53 4.2.3.2 SwitchedVariable-MirrorTypes . . . . . . . 54 4.2.3.3 SwitchedVariable-MirrorSCimplementation 56 5 Circuitoptimizationandsimulationresults 58 5.1 SimulationTestbench . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.1 Switchesoptimizationprocess . . . . . . . . . . . . . 62 5.3 SwitchedVariableMirrorAmplifier . . . . . . . . . . . . . . 63 5.3.1 Designspaceandalternatives . . . . . . . . . . . . . . 63 5.3.2 Slewrateandlinearrelaxation . . . . . . . . . . . . . 65 5.3.3 SVMAType1Optimization . . . . . . . . . . . . . . . 66 5.3.4 SVMAType2Optimization . . . . . . . . . . . . . . . 68 5.3.5 2nd and3rd SVMAstages . . . . . . . . . . . . . . . . 71 5.4 SCΣ-∆Melectricalsimulations . . . . . . . . . . . . . . . . . 71 6 Conclusions 74 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References 76 vi List of Figures 1.1 ADC basic block diagram and Analog-to-Digital conversion process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 (A) 6-level quantizer characteristic and its quantization er- ror, (B) equivalence of the quantizer block diagram with its simplifiedlinearmodelaccountingfortheinjectionofauni- formlydistributedwhitenoise. . . . . . . . . . . . . . . . . . 3 1.3 Murmann survey of ADC performance: representation on theENOBversussignalbandwidthplane. . . . . . . . . . . . 5 1.4 Murmann survey of ADC performance: representation on theenergy-per-conversionversustheENOB. . . . . . . . . . 6 1.5 In-bandnoisepowerrepresentationsinthreedifferentcases: Nyquist-rateADC,oversampledADCandoversampledwith noiseshapingADC. . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 BasicsingleloopΣ-∆Modulatorblockdiagram. . . . . . . . 8 1.7 Discretetime(A)andContinuoustime(B)Σ-∆modulators blockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Design flow diagram adopted in this work. Design tasks havebeenmappedtotheirrespectivedesignenvironment. . 13 2.1 Typical Σ-∆ Modulator power spectral density with perfor- mancemetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Graphicalrepresentationofthemostimportantperformance metricsofΣ-∆ADC. . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 TestvehicleboardoftheΣ-∆ADCof[32]. . . . . . . . . . . 21 2.4 Σ-∆ModulatorPSDmeasurementoftheΣ-∆ADCof[32]. 22 3.1 DesignflowofHighlevelmodulatorimplementation. . . . . 27 3.2 L-thorderdistributedfeedbackΣ-∆Modulator. . . . . . . . 28 3.3 2nd orderdistributedfeedbackΣ-∆Modulator. . . . . . . . . 28 3.4 Transient simulation and signal distortion at integrator out- putsfora2nd orderdistributedfeedbackΣ-∆modulator. . . 30 3.5 L-thorderFeedforwardΣ-∆Modulator. . . . . . . . . . . . 30 3.6 2nd orderFeedforwardΣ-∆Modulator. . . . . . . . . . . . . 31 3.7 Transient simulation and signal distortion at integrator out- putsfora2nd orderfeedforwardΣ-∆modulator.. . . . . . . 32 3.8 Block diagram of the 3rd order feedforward Σ-∆ modulator developedinthiswork. . . . . . . . . . . . . . . . . . . . . . 34 3.9 Transientsimulationsandstatevariablesdistributionfortwo differentcandidatesofthegridsearchalgorithm. . . . . . . . 36 3.10 High level simulation results of 3rd order Σ-∆ modulator modelofthiswork. . . . . . . . . . . . . . . . . . . . . . . . . 37 3.11 Mismatchcoefficienttestresults. . . . . . . . . . . . . . . . . 38 3.12 SNDRdegradationasfunctionoftheintegratorsettlingerror. 39 vii 3.13 Graphical representation of a non-uniform sampling of a si- nusoidalsignalduetoclockjitter. . . . . . . . . . . . . . . . . 40 3.14 SNDRdegradationasfunctionofJitter. . . . . . . . . . . . . 41 3.15 Referencenoisetestresults. . . . . . . . . . . . . . . . . . . . 42 3.16 High level PSD-spectrum with (Grey) and without (Black) thermalnoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 InterleavedoperationofswitchedOpAmpsina3rd orderΣ- ∆ Modulator. This implementation modifies the loop trans- ferfunctioninawaythatmakethemodulatordysfunctional. Itisshownhereforillustrationpurposes. . . . . . . . . . . . 45 4.2 3rd order Σ-∆M SC based on switched OpAmps. Here the switched OpAmps blocks are labelled as SVMA accounting fortheswitchedvariablemirroramplifiers. . . . . . . . . . . 46 4.3 Rearrangement of half delays in a cascade of two half delay integrators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Σ-∆MSC-switchedOpAmpschematicduringφ . . . . . . 48 1−2 4.5 Σ-∆MSC-switchedOpAmpschematicduringφ . . . . . . 49 3−4 4.6 Σ-∆Mphasegenerator. . . . . . . . . . . . . . . . . . . . . . 50 4.7 Σ-∆Moperationchronogram. . . . . . . . . . . . . . . . . . . 51 4.8 Σ-∆modulatorsinglebitquantizer. . . . . . . . . . . . . . . 52 4.9 Σ-∆modulatorsinglebitquantizerwaveformrepresentation. 52 4.10 GeneralarchitectureoftheproposedVMA[33]. . . . . . . . . 53 4.11 Qualitativelarge-signalClass-ABoperation[33]. . . . . . . . 54 4.12 Type1Class-ABcurrentamplifier[33]. . . . . . . . . . . . . . 55 4.13 Type2Class-ABcurrentamplifier[33]. . . . . . . . . . . . . . 55 4.14 SVMAschematicduringoffphase(A)andonphase(B). . . 57 5.1 Reduced Testbench schematic used in the optimization pro- cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Differential output voltage waveforms during the integra- tion phase for input differential voltage ranging from 0 to -1V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Differential output voltage (Red) and its derivative (Yellow) representationobtainedfromFig.5.2. . . . . . . . . . . . . . . 60 5.4 HighlevelsimulationresultsfortwodesigncasesofFig.5.1. 61 5.5 SCΣ-∆modulatorfirststageschematicshowingrelevantis- suesregardingthesamplerswitches. . . . . . . . . . . . . . . 62 5.6 SC Σ-∆ modulator second and third stage schematic illus- tratingtheswitchedOpAmpactionontheswitchingscheme. 63 5.7 Qualitative transient response of the VMA differential out- putvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.8 Type 1 differential output voltage waveform with K = 4 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 67 tail 5.9 Type 1 differential output voltage waveform with K = 8 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 67 tail 5.10 Type1differentialoutputvoltagewaveformsforafixedVin DIFF stepof1VandI equalto150,100and50µA. . . . . . . . 68 tail 5.11 Type 2 differential output voltage waveform with K = 4 AB andI = 150µA. . . . . . . . . . . . . . . . . . . . . . . . . . 69 tail viii 5.12 Type2differentialoutputvoltagewaveformsforafixedVin DIFF stepof1VwithI of150µAandK equalto3,4and6.. 69 tail AB 5.13 Type 2 differential output voltage waveform with K = 4 AB andI = 100µA. . . . . . . . . . . . . . . . . . . . . . . . . . 70 tail 5.14 SCΣ-∆Melectricalsimulations(Cadence),whichrepresents 7 days of computing for 16 cycles with the ideal versions of the quantizer and the switching network, versus the maxi- mum of 20 minutes spent in the bottom-up approach (sim- plifiedCadencetestbenchandPythoncodesimulation). . . . 73 ix List of Tables 1.1 Initial specifications and characteristics of the Σ-∆ Modula- torofthisthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Σ-∆ModulatorSNDRsimulatedunderprocessandtemper- aturevariations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Σ-∆ModulatorSNDRmeasurementsacrosstemperature. . 24 3.1 Σ-∆ Modulator simulation time comparison on 12 GHz/24 CPUsx86_64machine. . . . . . . . . . . . . . . . . . . . . . . 26 3.2 SNDRpeakvalueforvariousΣ-∆Modulatorconfigurations, consideredinthiswork. . . . . . . . . . . . . . . . . . . . . . 33 3.3 ExtractedoutputsamplesoftheGridsearchalgorithm. . . . 35 3.4 Selected set of coefficients for the 3rd order Σ-∆ Modulator ofthiswork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Gaincoefficientsgeneratedforthemismatchsensitivitytest. 38 3.6 CapacitorsizingfortheSCΣ-∆M. . . . . . . . . . . . . . . . 43 5.1 CapacitorvaluesusedinFig.5.1. . . . . . . . . . . . . . . . . 59 5.2 SVMAcandidatesperformanceforK = 6andI = 200µA. 65 AB tail 5.3 Type1exploreddesignspace. . . . . . . . . . . . . . . . . . . 68 5.4 Type2exploreddesignspace. . . . . . . . . . . . . . . . . . . 70 5.5 2nd and3rd SVMAstagesscaledown. . . . . . . . . . . . . . 71 5.6 Simulated dynamic current consumption of each SC Σ-∆M implementedforbothSVMAtypes. . . . . . . . . . . . . . . 71 5.7 SCΣ-∆MType2simulationacrosscorners. . . . . . . . . . . 72
Description: