Application Report SBOA114–February2006 Design Methodology for MFB Filters in ADC Interface Applications MichaelSteffes.................................................................................................... High-SpeedProducts ABSTRACT While the Multiple FeedBack (MFB) filter topology is well-known, its application to very high dynamic range analog-to-digital converter (ADC) interfaces requires a careful consideration of component value selection. This application report develops the ideal transferfunction,thenintroducesacomponentselectionmethodology and discusses its impact on noise and distortion. The impact of amplifier Gain Bandwidth Product on final pole locations is also included, showing several examples. A complete high dynamic range, differential I/O filter for wide dynamic range ADC driving is then designed. A simple design spreadsheet embodying this design approach is available for download withthisapplicationreport. Contents 1 MFBFilterTransferFunction...................................................................... 2 2 MFBActiveFilterNoiseGainAnalysis.......................................................... 5 3 SettingtheIntegratorPoletoImproveNoiseandDistortion.................................. 7 4 ExampleDesignsShowingtheImpactofIntegratorPoleLocation.......................... 8 5 MFBFilterImplementedwithNon-Unity-GainStableOpAmps ........................... 12 6 DifferentialVersionof3rd-OrderDesign....................................................... 15 7 PoleSensitivitytoAmplifierGainBandwidthProduct........................................ 17 8 Summary........................................................................................... 20 9 References......................................................................................... 20 AppendixA OutputNoiseAnalysis .................................................................. 21 AppendixB SolutionforR andC .................................................................. 23 3 1 AppendixC EffectofanEqualCTarget ............................................................ 26 AppendixD NoiseGainZeroeswithC =¥ ........................................................ 27 1 AppendixE NoiseGainZeroesforR =R Targeted ............................................. 30 3 2 ListofFigures 1 MFBFilterTopology................................................................................ 2 2 DCAnalysisCircuit................................................................................. 3 3 FeedbackAnalysisCircuitforMFBFilter........................................................ 6 4 InitialTestCircuitusingtheOPA820ina1MHz,ButterworthLow-PassFilter Configuration........................................................................................ 9 5 NoiseGainandOpen-LoopGainforCircuitinFigure4 ...................................... 9 6 NewDesignCircuitwithNoiseGainPeaking................................................. 10 7 NoiseGainPlotforFigure6..................................................................... 10 8 SimulatedSmallSignalBandwidthforFigure4andFigure6............................... 11 9 OutputSpotNoiseComparison................................................................. 12 10 NoiseGainPlotforInitialOPA2614MFBFilterDesign...................................... 13 11 NoiseGainwithOPA2614Open-LoopGainforC =31.8pF............................... 14 T 12 FrequencyResponsefortheOPA2614MFBFilterDesign(Each1/2ofFigure14)..... 14 13 ExpandedViewof3rd-OrderFilterResponse(seeFigure14)............................. 15 14 Single-SupplyDifferentialADCInterfacewith3rd-OrderBesselFilter(withf = -3dB FilterProisatrademarkofTexasInstruments. Alltrademarksarethepropertyoftheirrespectiveowners. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 1 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction 5MHz)............................................................................................... 16 15 OPA2614Single+5VDistortionforNoninvertingDifferentialGainof8................... 17 A-1 NoiseAnalysisCircuitforMFBFilter........................................................... 21 1 MFB Filter Transfer Function TheMultipleFeedBack(MFB)filteriswidelyusedforvery highdynamicrangeADC input stages.This filteroffersexceptionalstopbandrejectionoverotherfilter topologies (Ref.1). Figure1showsthestarting pointforthisfilterdesign. R 1 C 2 R R 3 2 V I C1 VFB VO Figure1. MFBFilter Topology Thisdesignisaninvertingsignalpath,2nd-order, low-passfilter that offersnumerousadvantagesover Sallen-Keyfilters.Thissingle-endedI/Ointerfacecanbeeasilyadapted toadifferentialI/O interface,as willbeshownlater. Afewoftheadvantagesofthistopologyinclude: 1. Nogainforthenoninvertingcurrentnoiseand/orDCbiascurrent.Figure1showsthenon-inverting inputgrounded,whichisgreatforreducingnoisebut lessthanidealfor DCprecision. Addingaresistor equalto theDCimpedancelookingouttheinvertingnodeachievesbias currentcancellation;adding a capacitoracross thisresistorreducesthenoise contributionforthe resistorandthe opampbias currentnoise.IftheamplifierisaJFETor CMOStype,thisbias current cancellationwillnotworkand thenoninvertinginputshouldsimplybeset togroundor adesiredreferencevoltage. 2. Thein-bandsignalgainissetby–(R /R ). Aswillbeshown,R alsosetstheQ ofthe filterwhile 1 3 3 havingnoinfluenceoverw . o EmbeddedwithinthefilterisanIntegratorcomprisedofR andC , alongwiththeVoltageFeedBack 2 2 (VFB)opamp.Thisdesignnormallyneedsto beimplementedusingaunity-gainstable, VFBopamp becausethecore gainelementneedstobeconfiguredasanIntegrator.Therearedynamicrange advantagestousingnon-unity-gainstableVFBamplifiersandadesign approachforsuccessfullyapplying thosetypes ofdeviceswillbeshownlater. However,aCurrent FeedBack(CFB) opampisusually not suitableto thistypeoffiltersinceitslocalstability requiresafeedbackresistornearlyequalto a recommendedvalue.AcapacitivefeedbackasrequiredinFigure1willtypicallynot workwithCFB amps withoutsomedesigntricksthatusuallyimpairnoiseperformance (Ref.2). Sincethe emergingFully DifferentialAmplifiers(FDA)areessentially voltagefeedback opamps,they canalsobeappliedquite successfullytothistopology(Ref.3). Numerousapproachestoselectingthecomponent valuesareavailable intheliterature(see, for example, Ref.4).Anequal-Rapproachiscommon,andwillbeshown asadesirableapproachonceaninitialR is 2 chosen.AsADCscontinuetoimprove,the resistornoise inthisfiltercanactually beadominantelement inthetotalnoisespectrumdeliveredtothe converterinput. Oneoutcomeofthe equal-Rdesign(Ref.4)is thatquiteunequalCsarethenrequiredfor mostfilter targets.That isinfact generallytrueforthisfilter type(aswillbeshownlater).IfanequalCdesignisdesired,anotherfilter typeshouldbeconsidered (Sallen-Key). 2 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction TheLaplacetransferfunctionforthecircuit ofFigure1isshownasEquation1. Vo(cid:3) (cid:2)1 · 1 Vi C1C2R2R3 s2(cid:1)sC R1R (cid:4)R3(cid:1)R2(cid:4)1(cid:1)RR3(cid:5)(cid:5)(cid:1)R R1C C 1 2 3 1 1 2 1 2 (1) Thevariousdesigngoalsofinterestinthisequationcanbesolvedas: • theDCgain(wheres=0): R AV(cid:1)DC(cid:2)(cid:2)(cid:1)R1 (cid:4)inV(cid:3)V(cid:5) 3 (2) • characteristicfrequency: (cid:1)o(cid:1)(cid:2)R R1C C (cid:1)inradians(cid:2) 1 2 1 2 (3) • thequalityfactor: (cid:3)C 1 C 2 Q(cid:2) (cid:1)unitless(cid:2) (cid:3)R (cid:3)R (cid:3)R R 1 2 1 2 (cid:1) (cid:1) R R R 2 1 3 (4) R Or, with(cid:1)(cid:3) 1 R 2, (cid:1)(cid:1)(cid:1) (cid:6)C R 1 3 C (cid:1)(cid:1)(cid:1)Q(cid:2) 2 R2(cid:6)(cid:1)(cid:1)R3(cid:4)(cid:6)(cid:1)(cid:1)(cid:6)1(cid:1)(cid:5) (5) Asisusuallythecaseinactivefilterdesign, therearemorepassive elementstoberesolvedthanfilter characteristics.Here,therearefiveelementsandonlythreetargets. Thissituationoftenleads tothevery commonequal-Rassumptiontoreachadesign wherethat isasomewhatarbitraryway toeliminateone degreeoffreedom.Thereshouldbeamore rationalway toselectcomponent valuesfor thesefilters. Lookingat thecircuit ofFigure1atDCgivesthesimplifiedcircuitof Figure2thatwillbeusedtoshowthe DCpartofthelow-passfilter. R 1 R R 3 2 V I VO R P Set:R =R +R œœR P 2 1 3 Figure2. DCAnalysisCircuit Aresistor(R )hasbeenaddedonthenoninvertinginput toprovidefor DCbiascurrentcancellationin the P outputoffsetvoltage.Settingitasshownreducestheoutput DCerrorto(I •R )ifthe opampshowsan OS 1 inputbiascurrentthathasanoffsetcurrentspecification. Again, JFETorCMOSamplifierswouldnot use thisR resistorforoutputDCerrorreduction. P SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 3 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction Thetotaloutputnoiseisaconsiderablymoreinvolveddiscussion. AppendixAdevelops that expression forthecircuit ofFigure2,wherethebandlimitingeffectsofthe filtercapacitorsareneglected. Thetotal outputnoiseisgivenasEquation6(whichisalsoEquationA-3inAppendixA), wherethetermsarising fromR areneglected. P (cid:7) 2 2 2 e (e )2(cid:5)1 R1(cid:6) 4kTR (cid:5)1 R1(cid:6) 4kTR (cid:5)1 R1(cid:6) i 2(cid:3)R (cid:5)1 R1(cid:6) R (cid:4) o(cid:2) n (cid:1)R (cid:1) 2 (cid:1)R (cid:1) 1 (cid:1)R (cid:1)n 2 (cid:1)R (cid:1) 1 3 3 3 3 (6) Itwouldbereasonabletoassumethatmost designswouldnotwant the resistortermstoaddtoomuch morenoiseattheoutputthantheopampnoisevoltageitself.Thisidea canbeusedto develop Equation7(EquationA-4inAppendixA)wheretheopampnoise voltage(squared)istargetedtobe equaltothetotalnoisepowercontributionofthe R andR resistorsat theoutput. 2 3 2 2 (cid:3)1(cid:1)RR1(cid:4) en2(cid:2)(cid:3)4kTR2(cid:1)(cid:3)inR2(cid:4)2(cid:4)(cid:3)1(cid:1)RR1(cid:4) (cid:1)in2(cid:3)2R2R1(cid:3)1(cid:1)RR1(cid:4)(cid:4) 3 3 3 (7) ThisexpressionstillincludesbothR andR . R isalso aresistorthat willcontributetothe totaloutput 1 3 3 noiseinasimilarfashiontoR .Itwouldbepreferableto makeitaslowaspossiblewithinthe constraint 2 thatitshouldnotloadthedrivingsignalsourcetothe pointof creatingadominantdistortionmechanismin thatpriorstage.As amaximumvalue, itmightbereasonableto letitequalR whilerecognizingthat 2 movingitlowerwillbenefitthetotaloutput noise. If R istentatively setequalto R , Equation7can be 3 2 simplifiedandputintoaformtosolveforR , asshowninEquation8(fromEquationA-13inAppendixA). 2 2 R22(cid:1)R2(cid:4)11(cid:1)(cid:1)3AAVV(cid:5) (4ikn2T)(cid:2)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5)(cid:4)einn(cid:5) (cid:3)0 (8) Thisequationmaythenbesolvedusingthe quadraticequationforaninitialtargetvaluefor R asshown 2 inEquation9(whereonlythepositivesolutionforR isused;notethat Equation9isalso Equation A-14in 2 AppendixA). R2(cid:3)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5) (2ink2T)(cid:7)(cid:8)(cid:9)(cid:6)1(cid:1)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5)(cid:4)2eknT(cid:5)2 (cid:2)1 (cid:7)(cid:10)(cid:11) (9) Thisformulagivesaninitialsuggestedvaluefor R (notethat embeddedinthissolution istheassumption 2 thatR willthenbesetequaltoR ).BothR andR maybeset lowertoimprovenoise.Recognize, 3 2 2 3 however,thatverylowvalueswillstarttoload theoutput stagedriving intothisfilter andthefilterop amp outputstage(ifR isalsoverylow).Theycanalso besethigher tolightenthe loadingwhereanincrease 1 intotaloutputnoisewillbetheresult. OnceR isselected,eitherfromthisnoiseconsiderationor fromsomeotherapproach, wenowneedto 2 selectoneofthecapacitorvaluestoremoveitfromthefilter designequations.Withtwoelements selected,theremainingthree canbeusedto setthe threefilter designgoals. Insolvingto achieve the desiredfiltershape,itispossible(AppendixB)to arriveatanequationfor C that showsacritical 1 constraintontheR C product.Thatconstraint canbeseeninEquation10(which istaken from 2 2 AppendixBasEquationB-22): Q C1(cid:3)(cid:1)oR2(cid:4)1(cid:2)Q(cid:1)oR2C2(cid:1)1(cid:1)AV(cid:2)(cid:5) (10) Equation10clearlyshowsthattheR C productmust belowenoughtokeepthe solutionfor C >0. That 2 2 1 constraintisshownasEquation11: (cid:1) R C (cid:2) 1 for C (cid:3)0 o 2 2 Q(cid:1)1(cid:1)A (cid:2) 1 V (11) or: 1 (cid:2)Q(cid:1)1(cid:1)A (cid:2) (cid:3)ratioofIntegratorpoletotarget(cid:1) (cid:4) (cid:1) R C V o o 2 2 (12) 4 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com MFBActiveFilterNoiseGainAnalysis (1/w R C )isphysicallytheratiooftheIntegratorpoleto thetargetw . Equation12sets aminimumlimit o 2 2 o forthatratio,whilemovingabovethatlimitisessentiallymovingtheIntegratorpoleout relativetow o (reducingC ifw andR arefixed). Solvingforequality inEquation12solvesfor aninfinitevalue of C . 2 o 2 1 So,movingtheIntegratorpoleoutalsoreducesthe requiredvaluefor C frominfinityto somemore 1 reasonablevalue. WhileEquation11andEquation12giveanicelimit onasolutionfor C andC (notethat onceC is 2 1 2 selected,Equation10givesC completelydefinedbythe desiredfiltershapeandaselectedR value), 1 2 theydonottellusmuch aboutwhere toplacethe Integratorpole. Oneoptionconsidered formanyactive filterdesignsistoset thetwocapacitorsequal. Thissolutionis sometimesconsideredpreferabletogetbettermatchinginorderto minimizethesensitivity functions. Equation10actuallygivesusaneasywayto testthisapproachbytemporarily targetingC = C ,then 1 2 solvingtheresultingexpressionforC (AppendixC). Equation13showstheresultingquadraticwhile 2 Equation14showsthesolutionforC .Again,thissimplifiedapproachisonly possibleifR isinitially 2 2 selectedfromeitheranoiseapproachor someotherconsideration. C2 (cid:2) C 1 (cid:1) 1 (cid:3)0 2 2 R2Q(cid:1)o(cid:1)1(cid:1)AV(cid:2) (R2(cid:1)o)2(cid:1)1(cid:1)AV(cid:2) (13) (whichisEquationC-3inAppendixC;) C2(cid:4)2QR2(cid:1)1o(cid:1)1(cid:2)AV(cid:2)(cid:5)1(cid:1)(cid:7)1(cid:3)(2Q)2(1(cid:2)AV)(cid:6) (14) (whichisEquationC-10inAppendixC;) TheradicalinEquation14onlysolvesfor non-imaginaryC valuesif(2Q)2•(1 +A )£ 1.Assuming a 2 V minimumA =1requiresaQ<0.353.SettingQ= 0.353andA =1givesaC solutionthat istwo V V 2 repeatedvaluesgiveninEquation15: C (cid:1)C (cid:1) 1 2 1 1.43R (cid:1) 2 o (15) UsinganactivefilterforaQ<0.5(tworealpoles) and/orgain <1isunlikelybecauseasimplepassive circuitcaneasilyprovide attenuationandtworealpoleswithout requiringanactiveelement. Thus,an equalC designis interestingbutnotparticularlyusefulfor anMFBfilter design. 2 MFB Active Filter Noise Gain Analysis Onepossibleapproachtosettingthe(1/R C )product (Integratorpolelocation) isto investigatewhat 2 2 impactitmighthaveontheresultingnoisegainfor thecompletedfilter. Recallthat the noisegain isthe reciprocalofthefeedbackattenuationfromthe opampoutput pinbacktothe invertinginput pin. This noisegainisanimportantconsideration forat least threereasons. 1. Anypeakinginthenoisegainwill, of course,peakupthe gaintothe outputfor the totalequivalent inputvoltagenoise(includingtheR effectsconsideredearlier). 2 2. Noisegainpeakingwill alsoreducethe loopgain. Allotherthingsbeing equal, reducedloopgainwill showupashigheroutputharmonicdistortion. 3. Thepointwhere thenoisegaincrossestheopen-loopgain(inaBodeplot) alsodeterminestheloop gainphasemargin.Phase marginat thiscrossoverpoint setsthe stabilityfor theoveralldesign. Thefeedbackdividercircuit fortheMFBfilterisshowninFigure3. Anaddedelementisincludedherethat wasnotinFigure1—aparasiticorintentionalcapacitor(C )ontheinvertinginput pin. T SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 5 SubmitDocumentationFeedback www.ti.com MFBActiveFilterNoiseGainAnalysis R 1 C2 V! R2 V O C C R T 1 3 Source input, assumed low impedance. Figure3.FeedbackAnalysisCircuit forMFBFilter Here,itiseasytoseethemultiplefeedbacknatureof thecircuit.AtDC, thepath isthroughR and R , 1 2 whileathighfrequenciesitisthroughC . 2 ThedesiredLaplacetransferfunctionhereisfromV to V–(theinvertinginput voltage). Thisattenuatoris O normallyreferredtoastheb incontroltheorydiscussionsofnegativefeedbacksystems.Thesolutionfor b isshownasEquation16. s2 s(cid:6) 1 1 (cid:7) 1 (cid:1) (cid:1) (cid:1) (cid:1)(cid:4)V(cid:2)(cid:3) C2 · C1R3 C1(cid:8)R1(cid:5)R2(cid:9) R1R2C1C2 V C C O T(cid:1) 2 s2 s(cid:6) 1 1 1 (cid:7) 1 (cid:1) (cid:1) (cid:1) (cid:1) C1R3 C1(cid:8)R1(cid:5)R2(cid:9) R2(cid:8)CT(cid:1)C2(cid:9) R2(cid:8)R1(cid:5)R3(cid:9)C1(cid:8)CT(cid:1)C2(cid:9) (16) Wearenormallymoreinterestedinlookingat 1/b , whichwillbethenoisegaindiscussedearlier. InvertingEquation16givesEquation 17. s2 s(cid:4) 1 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) (cid:1) 1 (cid:6)1 CT(cid:7)· C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R2(cid:6)CT(cid:1)C2(cid:7) R2(cid:6)R1(cid:3)R3(cid:7)C1(cid:6)CT(cid:1)C2(cid:7) (cid:2) (cid:1) (cid:1) C 2 s2 s(cid:4) 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R1R2C1C2 (17) Thereareseveral keypointstoEquation17: 1. Thepolesare identicaltothedesiredfilterpoles. 2. TheDC(s=0)gainbecomes(1+R /R ). 1 3 3. Thehighfrequencygain(assfi ¥ )goesto(1+ C /C ). T 2 4. IfC <<C ,thenthehighfrequencynoisegain approaches1. T 2 Thenoisegaintransferfunctionhastwozeroesandtwopoles. ThetransitionbetweentheDCgainand highfrequencygaindependsontherelativepositionof thezeroesandpoles. It wouldbepreferable to minimizethepeakinginthenoisegainwithinthe desiredlow-pass frequencybandasitmakesthis transitionfromtheDCgaintothesfi ¥ gain. If the desiredfilter shapecallsfor ahighQ, peakingin this noisegainresponseisunavoidableasthefrequencyapproachesw . If,however, oneor bothzeroesare o placedtofall belowthew frequency,addednoisegain peakingresultsthat mightbeunnecessary.The o questiontheniswhetherornotthosezeroescanbeplacedabovew inorder tolimitanyadditional o in-bandpeakingforthenoisegain. StartingfromEquation17,firstsetC =0for thisportionof theanalysis.It willbeusedlaterto allow T non-unity-gainstableamplifierstobeusedintheMFBtopology,but willunnecessarilycomplicatethe resolutionof(1/R C ).RewritingEquation17withthissimplificationyieldsEquation18. 2 2 s2 s(cid:4) 1 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) (cid:1) 1 C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R2C2 R2(cid:6)R1(cid:3)R3(cid:7)C1C2 (cid:2) (cid:1) s2 s(cid:4) 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R1R2C1C2 (18) 6 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com SettingtheIntegratorPoletoImproveNoiseandDistortion Then,observingthatthenumeratorcoefficientsare verynearlythesameasthe denominatorcoefficients, wecanrewritethenoisegainequationintermsofthedesired filter characteristicsasshownin Equation19. s2(cid:1)s(cid:3)(cid:2)Qo(cid:1)R1C (cid:4)(cid:1)(cid:1)1(cid:1)AV(cid:2)(cid:2)o2 1 2 2 (cid:2) (cid:3)MFBnoisegain(cid:4) (cid:1) s2(cid:1)s(cid:3)(cid:2)Qo(cid:4)(cid:1)(cid:2)o2 (19) Here,itbecomesveryapparentthattheembeddedIntegratorpole location,(1 /R C ), isthe oneadded 2 2 degreeoffreedominsettingthenoisegainzeroes. Allofthe otherelementsfeedingintothe noisegain zerocoefficientsaresetbythedesiredlow-pass, 2nd-orderfilter terms.It isthereforeveryusefulto cast thedesignanalysisintermsofthisIntegratorpole location.Morespecifically,workingintermsoftheratio (1/w R C )allowsbettersimplificationandissimply theratioof thetargetcharacteristic frequencyand o 2 2 theembeddedIntegratorpolelocation. 3 Setting the Integrator Pole to Improve Noise and Distortion Onelimittotherangeon(1/w R C )hasalreadybeensetinEquation12to achieverealvaluesforC . o 2 2 1 Setting(1 /w R C )equaltoQ(1+A )willsolveC for infinityandR for zero.Neither of these values o 2 2 V 1 3 areparticularlyusefulforimplementation, butareinterestingasalimitto thenoise gainzerolocations. UsingEquation12tosetaminimumlevelfor1/ R C givesw •Q•(1+A ). Puttingthisresultintothe 2 2 o V numeratorofEquation19,andsolvingforthe equivalentQ for the zeroesofthe noisegainintermsof C thedesiredfiltershapeterms,givesEquation20(from AppendixD,EquationD-9). QC(cid:2)1(cid:1)QQ(cid:3)21(cid:1)(cid:1)1(cid:1)AAVV(cid:2)(cid:2)1(cid:1)xx2 [where x(cid:2)Q(cid:3)1(cid:1)AV ] (20) Thisresultisveryusefulinthatitclearlyshowsthe maximumpossiblevaluefor Q isone-half. (1)This C occursforanycombinationofdesiredA andQthat sets Q•(cid:214) (1+ Av)= 1.Themost commoncondition V forthiswouldbeQ=0.707(Butterworthtarget) andA = 2.Thatcombination,withatargetfor the V IntegratorpolesetbyEquation12,givesrepeatedrealzeroesatw /Q (AppendixD). Severalimportant o conclusionscomefromthiscombination. 1. Thenoisegainzeroesarealwaystworealzeroes. 2. Theyarerepeated,andatthemaximum value, atw / Qfor thespecific conditionsdescribedabove o (whichis notrealizablesinceC =¥ ). 1 3. ForQ>1,itwillnecessarilybethecasethat oneofthezeroes willfallbelowthe targetw . This o observationsaysthathigherQtargetsintheMFBfilterhaveanaddedpeakinginthe noisegain beyondjustthedesiredfilterpolepeakingbecauseoneof thenoisegain zeroes movesbeloww . o 4. Movingthetarget(1/w R C )up(movingtheIntegratorpoleout) to getarealsolutionfor C o 2 2 1 effectivelymovesoneofthezeroesupinfrequencyandthe otherdown infrequencyalongthe negativerealaxisinthes-plane. 5. Itturnsoutthatthishigherzerolocationcorrespondsvery closelyto1/ R C asthe zeroesbecome 2 2 widelyseparated. Asthe(1/w R C )targetisincreasedfromitsminimumof Q•(1+ A ),C comesdownfrominfinityand o 2 2 V 1 R increasesfromzero.Thesechangesarebothdesirablewithinsome limits.AsR startstoincrease 3 3 beyondthetargetedR value(fromthenoiseanalysisofEquation9), itwillalsostartto addmeaningfully 2 tothetotaloutputnoise.Onepossiblelimit toR isto setitequaltoR andresolvewhatthismeansfora 3 2 (1/w R C )target.Equation21showsthisresult(from AppendixE). o 2 2 1 (cid:2)Q(cid:1)2A (cid:1)1(cid:2) [where R (cid:2)R isdesired] (cid:1) R C V 3 2 o 2 2 (21) AppendixEgoesontosolvefortheresultingzerolocationifEquation21isusedto set1/ R C .That 2 2 resultisshownasEquation22(EquationE-16fromAppendixE). (cid:8) (cid:7) 2(cid:10) Z1,2(cid:4)(cid:3)2(cid:1)Qo (cid:5)1(cid:2)Q2(cid:5)2AV(cid:2)1(cid:6)(cid:6)(cid:12)1(cid:1) 1(cid:3)(cid:5)1(cid:2)2QQ2(cid:7)(12(cid:2)AVA(cid:2)V1)(cid:6)(cid:12) (cid:9) (cid:11) (22) (1) x/(1+x2)reachesamaximumvalueequalto1/2over0£ x£ ¥ atx=1. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 7 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation Setting1/R C asgiveninEquation 21getsR =R . It alsosetsthe twonoisegain zeroesasgiven by 2 2 3 2 Equation22.Movingthetarget(1/w R C ) belowthevalueset byEquation21pullstheIntegratorpole o 2 2 down,movesthelowerzerotoahigherfrequency(actingtoreducethe noisegainpeaking), andreduces R belowR .Allofthesedesirableeffectssuggest that (1/w R C ) shouldbesetslightlybelowthevalue 3 2 o 2 2 determinedbyEquation21aslongasthe resultingR isnotsolowastopresent tooheavyaloadforthe 3 drivingsourceintothefilter.SinceR inFigure 1looks intoavirtualgroundnodein-band,the input 3 impedancebelowcutoffwillbeR .Conversely,movingthe(1 /w R C )abovethevaluesetby 3 o 2 2 Equation21increasesR beyondthetargetedR value,movesthe lowernoisegain zerodownfurther 3 2 (causingaddedpeakinginthenoisegainwithinthe desiredfrequencypassband), andextends the higher noisegainzerooutinfrequency(approximatingthe1/R C Integratorpolelocation). 2 2 Insummary,the(1/w R C )targetshouldbeset withintherangeindicatedinEquation23. o 2 2 Q(cid:1)A (cid:1)1(cid:2) (cid:2) 1 (cid:3) Q(cid:1)2A (cid:1)1(cid:2) V (cid:1) R C V (cid:3)(cid:3) o 2 2 (23) Setting 1 (cid:2)(cid:1) Q(cid:1)2A (cid:1)1(cid:2) gives R (cid:2)R R C o V 3 2 2 2 (cid:3)(cid:3) whilesetting 1 (cid:2)(cid:1) Q(cid:1)A (cid:1)1(cid:2) gives C (cid:4)(cid:3) and R (cid:2)0 R C o V 1 3 2 2 (24) 4 Example Designs Showing the Impact of Integrator Pole Location Nowlet'susetheseresultstostepthroughadesign andobservethenoise anddistortion thatresultsfrom variousselectionsof(1/w R C ).Allof thesedesigns givethe desiredfiltershape. It isthe noise gain o 2 2 shapeandnoisecontributionsoftheresistorvalues that areofinterest here. Startwithatargetdesigngivenby: • w =2p •1MHz o • Q=0.707 • A =2(gives anegativegainof2for thesignalpath) V Then,pickanamplifiertogetitsnoiseandopen-loopgaincharacteristic.Forthisfirst example,wewill usethesinglechannelOPA820—arelativelylow-noise,unity-gainstable, widebandVFB opamp.The necessaryspecificationsforthispart ofthe designareshown inTable1. Table1.OPA820NoiseandOpen-LoopGain Specifications PARTNO. GBW(MHz) e (nV/(cid:214) Hz) A (V/V) i (pA/(cid:214) Hz) n OL n OPA820 280 2.5 2000 1.7 ThetargetedmaximumR valueiscalculatedusing Equation9, givingthisresult: 2 • SuggestedR =366.38W 2 PickingR =250W willallowustoproceedtosetting the(1/w R C )target. Therecommendedrange 2 o 2 2 (usingEquation23)is: • MinimumallowedratioofIntegrator/w pole is:2.12 o – Thisresult setsalimittogettingavalidsolutionforC 1 • MaximumvaluetogetR =R is:3.53 3 2 – Thisresult setsR =R fornoise control 3 2 IftheR =R valueischosen,theresultingzero locationsare(from Equation22): 3 2 • First,computetheradicalforthepolynomial:0.714241334 – Thelowerzerolocationis707kHz – Theupperzero locationis4.24MHz 8 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation ContinuingwiththeR =R solution,thefinalcomponent valuesto placeintoFigure 1andthe design 3 2 sequenceare: • R =250W [selectedtocontrolnoiseusingEquation9] 2 • C =180pF[setbytargeting(1/w R C ) =Q(2A +1)] 2 o 2 2 V • C =1130pF[setusingEquation10] 1 • R =250W [setusingEquationB-17] 3 • R =500W [setusingEquation2] 1 • DCGain(A )=2.00V/V [fromEquation2] V • F =1MHz=F (ifQ=0.707)[fromEquation3] O –3dB • Q=0.707[fromEquation4] ThenoisegainandphasecanbecomputedusingEquation17whereC =3pFisusedto emulatea T parasiticcapacitanceontheinvertingopamp input.Thisnoise gainandphasecanbeplotted alongwith theopen-loopgainandphasefortheOPA820.Finally, the phasemarginwherethisnoisegain intersects theopen-loopresponsecanbederived. TheexamplecircuitdevelopedhereisshownasFigure4. 500W 180pF +5V 250W 250W V I 1130pF OPA820 V O 100W 0.1mF 417W -5V Figure4.InitialTestCircuitusingtheOPA820in a1MHz,ButterworthLow-PassFilterConfiguration ThiscircuitgivestheloopgainplotofFigure5. MFB OVERALL NOISE GAIN 90 OPA820 Open-Loop Gain 60 Noise-Gain Magnitude (cid:176)e () 30 as 0 h d P -30 Noise-Gain Phase n B) a -60 d n ( -90 ai G -120 -150 OPA820 Open-Loop Phase -180 3 4 5 6 7 8 9 10 10 10 10 10 10 10 Frequency (Hz) Figure5.NoiseGain andOpen-LoopGainforCircuitinFigure4 Thisplottransitionsfairlysmoothlyfromanoisegainof20log(3)= 9.5dBto0dBwithonly minorpeaking asaresultofthenoisegainzeroat707kHz.Phasemarginfor thiscircuitis51degrees,whichisquite stable. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 9 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation Inordertotesttheimpact ofsettingthe(1/w R C )targetfar toohigh, set itto10andrepeatthedesign o 2 2 inthismanner(stillholdingR =250W ): 2 • R =250W [selectedtocontrolnoiseusingEquation9] 2 • C =63.7pF[setbytargeting(1/w R C ) =10] 2 o 2 2 • C =571pF[setusingEquation10] 1 • R =1.39kW [setusingEquationB-17] 3 • R =2.79kW [setusingEquation2] 1 • DCGain(A )=2.00V/V[fromEquation2] V • F =1MHz[fromEquation3] O • Q=0.707[fromEquation4] Figure6showsthenewdesigncircuit withthese morewidelyseparatednoise gainzeroes(thesezeroes arenowat268kHzand10.7MHz,solvingthenumeratorof Equation19). 2.79kW 64pF +5V 1.39kW 250W V I 571pF OPA820 V O 100W 0.1mF 1.18kW -5V Figure6.NewDesignCircuitwithNoiseGainPeaking MFB OVERALL NOISE GAIN 90 OPA820 Open-Loop Gain 60 Noise-Gain Magnitude (cid:176)e () 30 as 0 h d P -30 n B) a -60 Noise-Gain Phase d n ( -90 ai G -120 -150 OPA820 Open-Loop Phase -180 3 4 5 6 7 8 9 10 10 10 10 10 10 10 Frequency (Hz) Figure7. NoiseGainPlot forFigure6 Theloopphasemarginisnotimpactedgreatly, goingto54degrees. Thisvalueisslightlybetterthan the previousone,andstillverystable.Theplot of Figure7clearlyshowsthislower zerointhe phase response.Thenoisegainphasecurvepeaksupmuchmoreasthezerocomesinearlierandbefore the twopolesreverseit.Moreimportantly,thenoisegain peaksupslightly, reducingthe availableloop gain in thepassband. 10 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback
Description: