ebook img

Design Methodology for MFB Filters in ADC - Texas Instruments PDF

32 Pages·2006·1.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design Methodology for MFB Filters in ADC - Texas Instruments

Application Report SBOA114–February2006 Design Methodology for MFB Filters in ADC Interface Applications MichaelSteffes.................................................................................................... High-SpeedProducts ABSTRACT While the Multiple FeedBack (MFB) filter topology is well-known, its application to very high dynamic range analog-to-digital converter (ADC) interfaces requires a careful consideration of component value selection. This application report develops the ideal transferfunction,thenintroducesacomponentselectionmethodology and discusses its impact on noise and distortion. The impact of amplifier Gain Bandwidth Product on final pole locations is also included, showing several examples. A complete high dynamic range, differential I/O filter for wide dynamic range ADC driving is then designed. A simple design spreadsheet embodying this design approach is available for download withthisapplicationreport. Contents 1 MFBFilterTransferFunction...................................................................... 2 2 MFBActiveFilterNoiseGainAnalysis.......................................................... 5 3 SettingtheIntegratorPoletoImproveNoiseandDistortion.................................. 7 4 ExampleDesignsShowingtheImpactofIntegratorPoleLocation.......................... 8 5 MFBFilterImplementedwithNon-Unity-GainStableOpAmps ........................... 12 6 DifferentialVersionof3rd-OrderDesign....................................................... 15 7 PoleSensitivitytoAmplifierGainBandwidthProduct........................................ 17 8 Summary........................................................................................... 20 9 References......................................................................................... 20 AppendixA OutputNoiseAnalysis .................................................................. 21 AppendixB SolutionforR andC .................................................................. 23 3 1 AppendixC EffectofanEqualCTarget ............................................................ 26 AppendixD NoiseGainZeroeswithC =¥ ........................................................ 27 1 AppendixE NoiseGainZeroesforR =R Targeted ............................................. 30 3 2 ListofFigures 1 MFBFilterTopology................................................................................ 2 2 DCAnalysisCircuit................................................................................. 3 3 FeedbackAnalysisCircuitforMFBFilter........................................................ 6 4 InitialTestCircuitusingtheOPA820ina1MHz,ButterworthLow-PassFilter Configuration........................................................................................ 9 5 NoiseGainandOpen-LoopGainforCircuitinFigure4 ...................................... 9 6 NewDesignCircuitwithNoiseGainPeaking................................................. 10 7 NoiseGainPlotforFigure6..................................................................... 10 8 SimulatedSmallSignalBandwidthforFigure4andFigure6............................... 11 9 OutputSpotNoiseComparison................................................................. 12 10 NoiseGainPlotforInitialOPA2614MFBFilterDesign...................................... 13 11 NoiseGainwithOPA2614Open-LoopGainforC =31.8pF............................... 14 T 12 FrequencyResponsefortheOPA2614MFBFilterDesign(Each1/2ofFigure14)..... 14 13 ExpandedViewof3rd-OrderFilterResponse(seeFigure14)............................. 15 14 Single-SupplyDifferentialADCInterfacewith3rd-OrderBesselFilter(withf = -3dB FilterProisatrademarkofTexasInstruments. Alltrademarksarethepropertyoftheirrespectiveowners. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 1 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction 5MHz)............................................................................................... 16 15 OPA2614Single+5VDistortionforNoninvertingDifferentialGainof8................... 17 A-1 NoiseAnalysisCircuitforMFBFilter........................................................... 21 1 MFB Filter Transfer Function TheMultipleFeedBack(MFB)filteriswidelyusedforvery highdynamicrangeADC input stages.This filteroffersexceptionalstopbandrejectionoverotherfilter topologies (Ref.1). Figure1showsthestarting pointforthisfilterdesign. R 1 C 2 R R 3 2 V I C1 VFB VO Figure1. MFBFilter Topology Thisdesignisaninvertingsignalpath,2nd-order, low-passfilter that offersnumerousadvantagesover Sallen-Keyfilters.Thissingle-endedI/Ointerfacecanbeeasilyadapted toadifferentialI/O interface,as willbeshownlater. Afewoftheadvantagesofthistopologyinclude: 1. Nogainforthenoninvertingcurrentnoiseand/orDCbiascurrent.Figure1showsthenon-inverting inputgrounded,whichisgreatforreducingnoisebut lessthanidealfor DCprecision. Addingaresistor equalto theDCimpedancelookingouttheinvertingnodeachievesbias currentcancellation;adding a capacitoracross thisresistorreducesthenoise contributionforthe resistorandthe opampbias currentnoise.IftheamplifierisaJFETor CMOStype,thisbias current cancellationwillnotworkand thenoninvertinginputshouldsimplybeset togroundor adesiredreferencevoltage. 2. Thein-bandsignalgainissetby–(R /R ). Aswillbeshown,R alsosetstheQ ofthe filterwhile 1 3 3 havingnoinfluenceoverw . o EmbeddedwithinthefilterisanIntegratorcomprisedofR andC , alongwiththeVoltageFeedBack 2 2 (VFB)opamp.Thisdesignnormallyneedsto beimplementedusingaunity-gainstable, VFBopamp becausethecore gainelementneedstobeconfiguredasanIntegrator.Therearedynamicrange advantagestousingnon-unity-gainstableVFBamplifiersandadesign approachforsuccessfullyapplying thosetypes ofdeviceswillbeshownlater. However,aCurrent FeedBack(CFB) opampisusually not suitableto thistypeoffiltersinceitslocalstability requiresafeedbackresistornearlyequalto a recommendedvalue.AcapacitivefeedbackasrequiredinFigure1willtypicallynot workwithCFB amps withoutsomedesigntricksthatusuallyimpairnoiseperformance (Ref.2). Sincethe emergingFully DifferentialAmplifiers(FDA)areessentially voltagefeedback opamps,they canalsobeappliedquite successfullytothistopology(Ref.3). Numerousapproachestoselectingthecomponent valuesareavailable intheliterature(see, for example, Ref.4).Anequal-Rapproachiscommon,andwillbeshown asadesirableapproachonceaninitialR is 2 chosen.AsADCscontinuetoimprove,the resistornoise inthisfiltercanactually beadominantelement inthetotalnoisespectrumdeliveredtothe converterinput. Oneoutcomeofthe equal-Rdesign(Ref.4)is thatquiteunequalCsarethenrequiredfor mostfilter targets.That isinfact generallytrueforthisfilter type(aswillbeshownlater).IfanequalCdesignisdesired,anotherfilter typeshouldbeconsidered (Sallen-Key). 2 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction TheLaplacetransferfunctionforthecircuit ofFigure1isshownasEquation1. Vo(cid:3) (cid:2)1 · 1 Vi C1C2R2R3 s2(cid:1)sC R1R (cid:4)R3(cid:1)R2(cid:4)1(cid:1)RR3(cid:5)(cid:5)(cid:1)R R1C C 1 2 3 1 1 2 1 2 (1) Thevariousdesigngoalsofinterestinthisequationcanbesolvedas: • theDCgain(wheres=0): R AV(cid:1)DC(cid:2)(cid:2)(cid:1)R1 (cid:4)inV(cid:3)V(cid:5) 3 (2) • characteristicfrequency: (cid:1)o(cid:1)(cid:2)R R1C C (cid:1)inradians(cid:2) 1 2 1 2 (3) • thequalityfactor: (cid:3)C 1 C 2 Q(cid:2) (cid:1)unitless(cid:2) (cid:3)R (cid:3)R (cid:3)R R 1 2 1 2 (cid:1) (cid:1) R R R 2 1 3 (4) R Or, with(cid:1)(cid:3) 1 R 2, (cid:1)(cid:1)(cid:1) (cid:6)C R 1 3 C (cid:1)(cid:1)(cid:1)Q(cid:2) 2 R2(cid:6)(cid:1)(cid:1)R3(cid:4)(cid:6)(cid:1)(cid:1)(cid:6)1(cid:1)(cid:5) (5) Asisusuallythecaseinactivefilterdesign, therearemorepassive elementstoberesolvedthanfilter characteristics.Here,therearefiveelementsandonlythreetargets. Thissituationoftenleads tothevery commonequal-Rassumptiontoreachadesign wherethat isasomewhatarbitraryway toeliminateone degreeoffreedom.Thereshouldbeamore rationalway toselectcomponent valuesfor thesefilters. Lookingat thecircuit ofFigure1atDCgivesthesimplifiedcircuitof Figure2thatwillbeusedtoshowthe DCpartofthelow-passfilter. R 1 R R 3 2 V I VO R P Set:R =R +R œœR P 2 1 3 Figure2. DCAnalysisCircuit Aresistor(R )hasbeenaddedonthenoninvertinginput toprovidefor DCbiascurrentcancellationin the P outputoffsetvoltage.Settingitasshownreducestheoutput DCerrorto(I •R )ifthe opampshowsan OS 1 inputbiascurrentthathasanoffsetcurrentspecification. Again, JFETorCMOSamplifierswouldnot use thisR resistorforoutputDCerrorreduction. P SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 3 SubmitDocumentationFeedback www.ti.com MFBFilterTransferFunction Thetotaloutputnoiseisaconsiderablymoreinvolveddiscussion. AppendixAdevelops that expression forthecircuit ofFigure2,wherethebandlimitingeffectsofthe filtercapacitorsareneglected. Thetotal outputnoiseisgivenasEquation6(whichisalsoEquationA-3inAppendixA), wherethetermsarising fromR areneglected. P (cid:7) 2 2 2 e (e )2(cid:5)1 R1(cid:6) 4kTR (cid:5)1 R1(cid:6) 4kTR (cid:5)1 R1(cid:6) i 2(cid:3)R (cid:5)1 R1(cid:6) R (cid:4) o(cid:2) n (cid:1)R (cid:1) 2 (cid:1)R (cid:1) 1 (cid:1)R (cid:1)n 2 (cid:1)R (cid:1) 1 3 3 3 3 (6) Itwouldbereasonabletoassumethatmost designswouldnotwant the resistortermstoaddtoomuch morenoiseattheoutputthantheopampnoisevoltageitself.Thisidea canbeusedto develop Equation7(EquationA-4inAppendixA)wheretheopampnoise voltage(squared)istargetedtobe equaltothetotalnoisepowercontributionofthe R andR resistorsat theoutput. 2 3 2 2 (cid:3)1(cid:1)RR1(cid:4) en2(cid:2)(cid:3)4kTR2(cid:1)(cid:3)inR2(cid:4)2(cid:4)(cid:3)1(cid:1)RR1(cid:4) (cid:1)in2(cid:3)2R2R1(cid:3)1(cid:1)RR1(cid:4)(cid:4) 3 3 3 (7) ThisexpressionstillincludesbothR andR . R isalso aresistorthat willcontributetothe totaloutput 1 3 3 noiseinasimilarfashiontoR .Itwouldbepreferableto makeitaslowaspossiblewithinthe constraint 2 thatitshouldnotloadthedrivingsignalsourcetothe pointof creatingadominantdistortionmechanismin thatpriorstage.As amaximumvalue, itmightbereasonableto letitequalR whilerecognizingthat 2 movingitlowerwillbenefitthetotaloutput noise. If R istentatively setequalto R , Equation7can be 3 2 simplifiedandputintoaformtosolveforR , asshowninEquation8(fromEquationA-13inAppendixA). 2 2 R22(cid:1)R2(cid:4)11(cid:1)(cid:1)3AAVV(cid:5) (4ikn2T)(cid:2)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5)(cid:4)einn(cid:5) (cid:3)0 (8) Thisequationmaythenbesolvedusingthe quadraticequationforaninitialtargetvaluefor R asshown 2 inEquation9(whereonlythepositivesolutionforR isused;notethat Equation9isalso Equation A-14in 2 AppendixA). R2(cid:3)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5) (2ink2T)(cid:7)(cid:8)(cid:9)(cid:6)1(cid:1)(cid:4)11(cid:1)(cid:1)3AAVV(cid:5)(cid:4)2eknT(cid:5)2 (cid:2)1 (cid:7)(cid:10)(cid:11) (9) Thisformulagivesaninitialsuggestedvaluefor R (notethat embeddedinthissolution istheassumption 2 thatR willthenbesetequaltoR ).BothR andR maybeset lowertoimprovenoise.Recognize, 3 2 2 3 however,thatverylowvalueswillstarttoload theoutput stagedriving intothisfilter andthefilterop amp outputstage(ifR isalsoverylow).Theycanalso besethigher tolightenthe loadingwhereanincrease 1 intotaloutputnoisewillbetheresult. OnceR isselected,eitherfromthisnoiseconsiderationor fromsomeotherapproach, wenowneedto 2 selectoneofthecapacitorvaluestoremoveitfromthefilter designequations.Withtwoelements selected,theremainingthree canbeusedto setthe threefilter designgoals. Insolvingto achieve the desiredfiltershape,itispossible(AppendixB)to arriveatanequationfor C that showsacritical 1 constraintontheR C product.Thatconstraint canbeseeninEquation10(which istaken from 2 2 AppendixBasEquationB-22): Q C1(cid:3)(cid:1)oR2(cid:4)1(cid:2)Q(cid:1)oR2C2(cid:1)1(cid:1)AV(cid:2)(cid:5) (10) Equation10clearlyshowsthattheR C productmust belowenoughtokeepthe solutionfor C >0. That 2 2 1 constraintisshownasEquation11: (cid:1) R C (cid:2) 1 for C (cid:3)0 o 2 2 Q(cid:1)1(cid:1)A (cid:2) 1 V (11) or: 1 (cid:2)Q(cid:1)1(cid:1)A (cid:2) (cid:3)ratioofIntegratorpoletotarget(cid:1) (cid:4) (cid:1) R C V o o 2 2 (12) 4 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com MFBActiveFilterNoiseGainAnalysis (1/w R C )isphysicallytheratiooftheIntegratorpoleto thetargetw . Equation12sets aminimumlimit o 2 2 o forthatratio,whilemovingabovethatlimitisessentiallymovingtheIntegratorpoleout relativetow o (reducingC ifw andR arefixed). Solvingforequality inEquation12solvesfor aninfinitevalue of C . 2 o 2 1 So,movingtheIntegratorpoleoutalsoreducesthe requiredvaluefor C frominfinityto somemore 1 reasonablevalue. WhileEquation11andEquation12giveanicelimit onasolutionfor C andC (notethat onceC is 2 1 2 selected,Equation10givesC completelydefinedbythe desiredfiltershapeandaselectedR value), 1 2 theydonottellusmuch aboutwhere toplacethe Integratorpole. Oneoptionconsidered formanyactive filterdesignsistoset thetwocapacitorsequal. Thissolutionis sometimesconsideredpreferabletogetbettermatchinginorderto minimizethesensitivity functions. Equation10actuallygivesusaneasywayto testthisapproachbytemporarily targetingC = C ,then 1 2 solvingtheresultingexpressionforC (AppendixC). Equation13showstheresultingquadraticwhile 2 Equation14showsthesolutionforC .Again,thissimplifiedapproachisonly possibleifR isinitially 2 2 selectedfromeitheranoiseapproachor someotherconsideration. C2 (cid:2) C 1 (cid:1) 1 (cid:3)0 2 2 R2Q(cid:1)o(cid:1)1(cid:1)AV(cid:2) (R2(cid:1)o)2(cid:1)1(cid:1)AV(cid:2) (13) (whichisEquationC-3inAppendixC;) C2(cid:4)2QR2(cid:1)1o(cid:1)1(cid:2)AV(cid:2)(cid:5)1(cid:1)(cid:7)1(cid:3)(2Q)2(1(cid:2)AV)(cid:6) (14) (whichisEquationC-10inAppendixC;) TheradicalinEquation14onlysolvesfor non-imaginaryC valuesif(2Q)2•(1 +A )£ 1.Assuming a 2 V minimumA =1requiresaQ<0.353.SettingQ= 0.353andA =1givesaC solutionthat istwo V V 2 repeatedvaluesgiveninEquation15: C (cid:1)C (cid:1) 1 2 1 1.43R (cid:1) 2 o (15) UsinganactivefilterforaQ<0.5(tworealpoles) and/orgain <1isunlikelybecauseasimplepassive circuitcaneasilyprovide attenuationandtworealpoleswithout requiringanactiveelement. Thus,an equalC designis interestingbutnotparticularlyusefulfor anMFBfilter design. 2 MFB Active Filter Noise Gain Analysis Onepossibleapproachtosettingthe(1/R C )product (Integratorpolelocation) isto investigatewhat 2 2 impactitmighthaveontheresultingnoisegainfor thecompletedfilter. Recallthat the noisegain isthe reciprocalofthefeedbackattenuationfromthe opampoutput pinbacktothe invertinginput pin. This noisegainisanimportantconsideration forat least threereasons. 1. Anypeakinginthenoisegainwill, of course,peakupthe gaintothe outputfor the totalequivalent inputvoltagenoise(includingtheR effectsconsideredearlier). 2 2. Noisegainpeakingwill alsoreducethe loopgain. Allotherthingsbeing equal, reducedloopgainwill showupashigheroutputharmonicdistortion. 3. Thepointwhere thenoisegaincrossestheopen-loopgain(inaBodeplot) alsodeterminestheloop gainphasemargin.Phase marginat thiscrossoverpoint setsthe stabilityfor theoveralldesign. Thefeedbackdividercircuit fortheMFBfilterisshowninFigure3. Anaddedelementisincludedherethat wasnotinFigure1—aparasiticorintentionalcapacitor(C )ontheinvertinginput pin. T SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 5 SubmitDocumentationFeedback www.ti.com MFBActiveFilterNoiseGainAnalysis R 1 C2 V! R2 V O C C R T 1 3 Source input, assumed low impedance. Figure3.FeedbackAnalysisCircuit forMFBFilter Here,itiseasytoseethemultiplefeedbacknatureof thecircuit.AtDC, thepath isthroughR and R , 1 2 whileathighfrequenciesitisthroughC . 2 ThedesiredLaplacetransferfunctionhereisfromV to V–(theinvertinginput voltage). Thisattenuatoris O normallyreferredtoastheb incontroltheorydiscussionsofnegativefeedbacksystems.Thesolutionfor b isshownasEquation16. s2 s(cid:6) 1 1 (cid:7) 1 (cid:1) (cid:1) (cid:1) (cid:1)(cid:4)V(cid:2)(cid:3) C2 · C1R3 C1(cid:8)R1(cid:5)R2(cid:9) R1R2C1C2 V C C O T(cid:1) 2 s2 s(cid:6) 1 1 1 (cid:7) 1 (cid:1) (cid:1) (cid:1) (cid:1) C1R3 C1(cid:8)R1(cid:5)R2(cid:9) R2(cid:8)CT(cid:1)C2(cid:9) R2(cid:8)R1(cid:5)R3(cid:9)C1(cid:8)CT(cid:1)C2(cid:9) (16) Wearenormallymoreinterestedinlookingat 1/b , whichwillbethenoisegaindiscussedearlier. InvertingEquation16givesEquation 17. s2 s(cid:4) 1 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) (cid:1) 1 (cid:6)1 CT(cid:7)· C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R2(cid:6)CT(cid:1)C2(cid:7) R2(cid:6)R1(cid:3)R3(cid:7)C1(cid:6)CT(cid:1)C2(cid:7) (cid:2) (cid:1) (cid:1) C 2 s2 s(cid:4) 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R1R2C1C2 (17) Thereareseveral keypointstoEquation17: 1. Thepolesare identicaltothedesiredfilterpoles. 2. TheDC(s=0)gainbecomes(1+R /R ). 1 3 3. Thehighfrequencygain(assfi ¥ )goesto(1+ C /C ). T 2 4. IfC <<C ,thenthehighfrequencynoisegain approaches1. T 2 Thenoisegaintransferfunctionhastwozeroesandtwopoles. ThetransitionbetweentheDCgainand highfrequencygaindependsontherelativepositionof thezeroesandpoles. It wouldbepreferable to minimizethepeakinginthenoisegainwithinthe desiredlow-pass frequencybandasitmakesthis transitionfromtheDCgaintothesfi ¥ gain. If the desiredfilter shapecallsfor ahighQ, peakingin this noisegainresponseisunavoidableasthefrequencyapproachesw . If,however, oneor bothzeroesare o placedtofall belowthew frequency,addednoisegain peakingresultsthat mightbeunnecessary.The o questiontheniswhetherornotthosezeroescanbeplacedabovew inorder tolimitanyadditional o in-bandpeakingforthenoisegain. StartingfromEquation17,firstsetC =0for thisportionof theanalysis.It willbeusedlaterto allow T non-unity-gainstableamplifierstobeusedintheMFBtopology,but willunnecessarilycomplicatethe resolutionof(1/R C ).RewritingEquation17withthissimplificationyieldsEquation18. 2 2 s2 s(cid:4) 1 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) (cid:1) 1 C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R2C2 R2(cid:6)R1(cid:3)R3(cid:7)C1C2 (cid:2) (cid:1) s2 s(cid:4) 1 1 (cid:5) 1 (cid:1) (cid:1) (cid:1) C1R3 C1(cid:6)R1(cid:3)R2(cid:7) R1R2C1C2 (18) 6 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com SettingtheIntegratorPoletoImproveNoiseandDistortion Then,observingthatthenumeratorcoefficientsare verynearlythesameasthe denominatorcoefficients, wecanrewritethenoisegainequationintermsofthedesired filter characteristicsasshownin Equation19. s2(cid:1)s(cid:3)(cid:2)Qo(cid:1)R1C (cid:4)(cid:1)(cid:1)1(cid:1)AV(cid:2)(cid:2)o2 1 2 2 (cid:2) (cid:3)MFBnoisegain(cid:4) (cid:1) s2(cid:1)s(cid:3)(cid:2)Qo(cid:4)(cid:1)(cid:2)o2 (19) Here,itbecomesveryapparentthattheembeddedIntegratorpole location,(1 /R C ), isthe oneadded 2 2 degreeoffreedominsettingthenoisegainzeroes. Allofthe otherelementsfeedingintothe noisegain zerocoefficientsaresetbythedesiredlow-pass, 2nd-orderfilter terms.It isthereforeveryusefulto cast thedesignanalysisintermsofthisIntegratorpole location.Morespecifically,workingintermsoftheratio (1/w R C )allowsbettersimplificationandissimply theratioof thetargetcharacteristic frequencyand o 2 2 theembeddedIntegratorpolelocation. 3 Setting the Integrator Pole to Improve Noise and Distortion Onelimittotherangeon(1/w R C )hasalreadybeensetinEquation12to achieverealvaluesforC . o 2 2 1 Setting(1 /w R C )equaltoQ(1+A )willsolveC for infinityandR for zero.Neither of these values o 2 2 V 1 3 areparticularlyusefulforimplementation, butareinterestingasalimitto thenoise gainzerolocations. UsingEquation12tosetaminimumlevelfor1/ R C givesw •Q•(1+A ). Puttingthisresultintothe 2 2 o V numeratorofEquation19,andsolvingforthe equivalentQ for the zeroesofthe noisegainintermsof C thedesiredfiltershapeterms,givesEquation20(from AppendixD,EquationD-9). QC(cid:2)1(cid:1)QQ(cid:3)21(cid:1)(cid:1)1(cid:1)AAVV(cid:2)(cid:2)1(cid:1)xx2 [where x(cid:2)Q(cid:3)1(cid:1)AV ] (20) Thisresultisveryusefulinthatitclearlyshowsthe maximumpossiblevaluefor Q isone-half. (1)This C occursforanycombinationofdesiredA andQthat sets Q•(cid:214) (1+ Av)= 1.Themost commoncondition V forthiswouldbeQ=0.707(Butterworthtarget) andA = 2.Thatcombination,withatargetfor the V IntegratorpolesetbyEquation12,givesrepeatedrealzeroesatw /Q (AppendixD). Severalimportant o conclusionscomefromthiscombination. 1. Thenoisegainzeroesarealwaystworealzeroes. 2. Theyarerepeated,andatthemaximum value, atw / Qfor thespecific conditionsdescribedabove o (whichis notrealizablesinceC =¥ ). 1 3. ForQ>1,itwillnecessarilybethecasethat oneofthezeroes willfallbelowthe targetw . This o observationsaysthathigherQtargetsintheMFBfilterhaveanaddedpeakinginthe noisegain beyondjustthedesiredfilterpolepeakingbecauseoneof thenoisegain zeroes movesbeloww . o 4. Movingthetarget(1/w R C )up(movingtheIntegratorpoleout) to getarealsolutionfor C o 2 2 1 effectivelymovesoneofthezeroesupinfrequencyandthe otherdown infrequencyalongthe negativerealaxisinthes-plane. 5. Itturnsoutthatthishigherzerolocationcorrespondsvery closelyto1/ R C asthe zeroesbecome 2 2 widelyseparated. Asthe(1/w R C )targetisincreasedfromitsminimumof Q•(1+ A ),C comesdownfrominfinityand o 2 2 V 1 R increasesfromzero.Thesechangesarebothdesirablewithinsome limits.AsR startstoincrease 3 3 beyondthetargetedR value(fromthenoiseanalysisofEquation9), itwillalsostartto addmeaningfully 2 tothetotaloutputnoise.Onepossiblelimit toR isto setitequaltoR andresolvewhatthismeansfora 3 2 (1/w R C )target.Equation21showsthisresult(from AppendixE). o 2 2 1 (cid:2)Q(cid:1)2A (cid:1)1(cid:2) [where R (cid:2)R isdesired] (cid:1) R C V 3 2 o 2 2 (21) AppendixEgoesontosolvefortheresultingzerolocationifEquation21isusedto set1/ R C .That 2 2 resultisshownasEquation22(EquationE-16fromAppendixE). (cid:8) (cid:7) 2(cid:10) Z1,2(cid:4)(cid:3)2(cid:1)Qo (cid:5)1(cid:2)Q2(cid:5)2AV(cid:2)1(cid:6)(cid:6)(cid:12)1(cid:1) 1(cid:3)(cid:5)1(cid:2)2QQ2(cid:7)(12(cid:2)AVA(cid:2)V1)(cid:6)(cid:12) (cid:9) (cid:11) (22) (1) x/(1+x2)reachesamaximumvalueequalto1/2over0£ x£ ¥ atx=1. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 7 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation Setting1/R C asgiveninEquation 21getsR =R . It alsosetsthe twonoisegain zeroesasgiven by 2 2 3 2 Equation22.Movingthetarget(1/w R C ) belowthevalueset byEquation21pullstheIntegratorpole o 2 2 down,movesthelowerzerotoahigherfrequency(actingtoreducethe noisegainpeaking), andreduces R belowR .Allofthesedesirableeffectssuggest that (1/w R C ) shouldbesetslightlybelowthevalue 3 2 o 2 2 determinedbyEquation21aslongasthe resultingR isnotsolowastopresent tooheavyaloadforthe 3 drivingsourceintothefilter.SinceR inFigure 1looks intoavirtualgroundnodein-band,the input 3 impedancebelowcutoffwillbeR .Conversely,movingthe(1 /w R C )abovethevaluesetby 3 o 2 2 Equation21increasesR beyondthetargetedR value,movesthe lowernoisegain zerodownfurther 3 2 (causingaddedpeakinginthenoisegainwithinthe desiredfrequencypassband), andextends the higher noisegainzerooutinfrequency(approximatingthe1/R C Integratorpolelocation). 2 2 Insummary,the(1/w R C )targetshouldbeset withintherangeindicatedinEquation23. o 2 2 Q(cid:1)A (cid:1)1(cid:2) (cid:2) 1 (cid:3) Q(cid:1)2A (cid:1)1(cid:2) V (cid:1) R C V (cid:3)(cid:3) o 2 2 (23) Setting 1 (cid:2)(cid:1) Q(cid:1)2A (cid:1)1(cid:2) gives R (cid:2)R R C o V 3 2 2 2 (cid:3)(cid:3) whilesetting 1 (cid:2)(cid:1) Q(cid:1)A (cid:1)1(cid:2) gives C (cid:4)(cid:3) and R (cid:2)0 R C o V 1 3 2 2 (24) 4 Example Designs Showing the Impact of Integrator Pole Location Nowlet'susetheseresultstostepthroughadesign andobservethenoise anddistortion thatresultsfrom variousselectionsof(1/w R C ).Allof thesedesigns givethe desiredfiltershape. It isthe noise gain o 2 2 shapeandnoisecontributionsoftheresistorvalues that areofinterest here. Startwithatargetdesigngivenby: • w =2p •1MHz o • Q=0.707 • A =2(gives anegativegainof2for thesignalpath) V Then,pickanamplifiertogetitsnoiseandopen-loopgaincharacteristic.Forthisfirst example,wewill usethesinglechannelOPA820—arelativelylow-noise,unity-gainstable, widebandVFB opamp.The necessaryspecificationsforthispart ofthe designareshown inTable1. Table1.OPA820NoiseandOpen-LoopGain Specifications PARTNO. GBW(MHz) e (nV/(cid:214) Hz) A (V/V) i (pA/(cid:214) Hz) n OL n OPA820 280 2.5 2000 1.7 ThetargetedmaximumR valueiscalculatedusing Equation9, givingthisresult: 2 • SuggestedR =366.38W 2 PickingR =250W willallowustoproceedtosetting the(1/w R C )target. Therecommendedrange 2 o 2 2 (usingEquation23)is: • MinimumallowedratioofIntegrator/w pole is:2.12 o – Thisresult setsalimittogettingavalidsolutionforC 1 • MaximumvaluetogetR =R is:3.53 3 2 – Thisresult setsR =R fornoise control 3 2 IftheR =R valueischosen,theresultingzero locationsare(from Equation22): 3 2 • First,computetheradicalforthepolynomial:0.714241334 – Thelowerzerolocationis707kHz – Theupperzero locationis4.24MHz 8 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation ContinuingwiththeR =R solution,thefinalcomponent valuesto placeintoFigure 1andthe design 3 2 sequenceare: • R =250W [selectedtocontrolnoiseusingEquation9] 2 • C =180pF[setbytargeting(1/w R C ) =Q(2A +1)] 2 o 2 2 V • C =1130pF[setusingEquation10] 1 • R =250W [setusingEquationB-17] 3 • R =500W [setusingEquation2] 1 • DCGain(A )=2.00V/V [fromEquation2] V • F =1MHz=F (ifQ=0.707)[fromEquation3] O –3dB • Q=0.707[fromEquation4] ThenoisegainandphasecanbecomputedusingEquation17whereC =3pFisusedto emulatea T parasiticcapacitanceontheinvertingopamp input.Thisnoise gainandphasecanbeplotted alongwith theopen-loopgainandphasefortheOPA820.Finally, the phasemarginwherethisnoisegain intersects theopen-loopresponsecanbederived. TheexamplecircuitdevelopedhereisshownasFigure4. 500W 180pF +5V 250W 250W V I 1130pF OPA820 V O 100W 0.1mF 417W -5V Figure4.InitialTestCircuitusingtheOPA820in a1MHz,ButterworthLow-PassFilterConfiguration ThiscircuitgivestheloopgainplotofFigure5. MFB OVERALL NOISE GAIN 90 OPA820 Open-Loop Gain 60 Noise-Gain Magnitude (cid:176)e () 30 as 0 h d P -30 Noise-Gain Phase n B) a -60 d n ( -90 ai G -120 -150 OPA820 Open-Loop Phase -180 3 4 5 6 7 8 9 10 10 10 10 10 10 10 Frequency (Hz) Figure5.NoiseGain andOpen-LoopGainforCircuitinFigure4 Thisplottransitionsfairlysmoothlyfromanoisegainof20log(3)= 9.5dBto0dBwithonly minorpeaking asaresultofthenoisegainzeroat707kHz.Phasemarginfor thiscircuitis51degrees,whichisquite stable. SBOA114–February2006 DesignMethodologyforMFBFiltersinADCInterfaceApplications 9 SubmitDocumentationFeedback www.ti.com ExampleDesignsShowingtheImpactofIntegratorPoleLocation Inordertotesttheimpact ofsettingthe(1/w R C )targetfar toohigh, set itto10andrepeatthedesign o 2 2 inthismanner(stillholdingR =250W ): 2 • R =250W [selectedtocontrolnoiseusingEquation9] 2 • C =63.7pF[setbytargeting(1/w R C ) =10] 2 o 2 2 • C =571pF[setusingEquation10] 1 • R =1.39kW [setusingEquationB-17] 3 • R =2.79kW [setusingEquation2] 1 • DCGain(A )=2.00V/V[fromEquation2] V • F =1MHz[fromEquation3] O • Q=0.707[fromEquation4] Figure6showsthenewdesigncircuit withthese morewidelyseparatednoise gainzeroes(thesezeroes arenowat268kHzand10.7MHz,solvingthenumeratorof Equation19). 2.79kW 64pF +5V 1.39kW 250W V I 571pF OPA820 V O 100W 0.1mF 1.18kW -5V Figure6.NewDesignCircuitwithNoiseGainPeaking MFB OVERALL NOISE GAIN 90 OPA820 Open-Loop Gain 60 Noise-Gain Magnitude (cid:176)e () 30 as 0 h d P -30 n B) a -60 Noise-Gain Phase d n ( -90 ai G -120 -150 OPA820 Open-Loop Phase -180 3 4 5 6 7 8 9 10 10 10 10 10 10 10 Frequency (Hz) Figure7. NoiseGainPlot forFigure6 Theloopphasemarginisnotimpactedgreatly, goingto54degrees. Thisvalueisslightlybetterthan the previousone,andstillverystable.Theplot of Figure7clearlyshowsthislower zerointhe phase response.Thenoisegainphasecurvepeaksupmuchmoreasthezerocomesinearlierandbefore the twopolesreverseit.Moreimportantly,thenoisegain peaksupslightly, reducingthe availableloop gain in thepassband. 10 DesignMethodologyforMFBFiltersinADCInterfaceApplications SBOA114–February2006 SubmitDocumentationFeedback

Description:
Single-Supply Differential ADC Interface with 3rd-Order Bessel Filter (with f-3dB = .. Starting from Equation 17, first set CT = 0 for this portion of the analysis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.