Table Of ContentPublishedonWeb03/03/2004
Design and Use of Fluorogenic Aldehydes for Monitoring the Progress of
Aldehyde Transformations
Fujie Tanaka,* Nobuyuki Mase, and Carlos F. Barbas, III*
TheSkaggsInstituteforChemicalBiologyandtheDepartmentsofChemistryandMolecularBiology,
TheScrippsResearchInstitute,10550NorthTorreyPinesRoad,LaJolla,California92037
ReceivedJanuary20,2004; E-mail:carlos@scripps.edu;ftanaka@scripps.edu
Simple and rapid methods for monitoring the progress of Scheme2
chemical reactions are critical for high-throughput screening of
catalysts as well as for characterization of catalysts on a small
scale.1,2 Fluorogenic substrates that increase in fluorescence as
reactions progress provide a straightforward method of reaction
monitoring because reaction progress is directly observed as an
increaseinfluorescence.2Wehavepreviouslydevelopedfluorescent
detectionstrategiestomonitorMichaelandDiels-Alderreactions
usingfluorogenicR,(cid:226)-unsaturatedcarbonylcompounds3andhave
demonstrated that the system is useful for evaluation of catalysts
andreactionconditions.4Aldehydesareversatileandareusedfor
Table1. FluorescenceofAldehydesandAldolsa
many types of reactions. To develop systems for monitoring the
wavelength(nm) fluorescenceintensity
progressofaldehydetransformations,anentirelynewapproachwas
required. Here we report the first design, synthesis, and use of solvent (cid:236)ex (cid:236)em cb aldehyde aldol foldc
fluorogenicaldehydesfordirectmonitoringofaldehydetransforma- 1,2 DMSO 282 360 50 1.7(cid:2)103 1.3(cid:2)104 8
tionsbyfluorescencegrowth. DMF 282 360 50 1.3(cid:2)103 1.2(cid:2)104 9
pH7 250 352 50 74d 1.9(cid:2)103d 26
Our design is based on resonance energy transfer5 between a 5,6 DMSO 300 360 50 1.1(cid:2)102 5.7(cid:2)102 5
fluorophoreandanaldehydeinasinglemolecule.Thefluorogenic 7,8 DMSO 265 385 5 4.9(cid:2)102 8.7(cid:2)103 19
aldehydesarecomposedofafluorophoreandanaldehydemoiety DMF 265 385 5 4.6(cid:2)102d 4.2(cid:2)103d 9
coupled by a linker. When intact, the aldehyde moiety acts as a pH7 250 380 5 57d 4.4(cid:2)103d 78
9,10 DMSO 315 360 5 2.5(cid:2)103 4.5(cid:2)104 18
quencherofthefluorophore’sfluorescence;however,thereaction
DMF 315 360 5 2.4(cid:2)103 4.5(cid:2)104 18
productofthealdehydemoietydoesnotquenchfluorescenceand pH7 315 360 5 6.5(cid:2)102 4.2(cid:2)103 6
fluorescence is “turned-on” in the product. We reasoned that an 11,12 DMSO 260 380 25 2.5(cid:2)102d 8.6(cid:2)102d 3
arylaldehydewouldquenchthefluorescenceofaproximalfluoro- DMSO 260 450 25 1.5(cid:2)104d 8.2(cid:2)103d 0.5
phore,andthatasimplearylgroupwithoutacarbonylwouldnot.6 aThefluorescencewasrecordedonamicroplatespectrophotometerusing
To test this hypothesis, we prepared the aldehyde 1 and aldol 2 100(cid:237)Lofsolutioncomposedof0.5%CH3CN,0.5%2-PrOH,and99%of
shown in Scheme 1. As expected, aldol 2 showed a higher fluo- theindicatedsolventina96-wellpolypropyleneplateat26 (cid:176) C.Solvent
pH7refersto50mMsodiumphosphate,pH7.0.Thedataareshownafter
rescence than aldehyde 1 (Table 1). On the other hand, neither backgroundcorrectionexceptwherenoted.bc)concentrationofaldehyde
aldehyde 3 nor aldol 4 was fluorescent. Note that in 4, the aryl oraldol((cid:237)M).cfold)fluorescenceintensityofaldol/fluorescenceintensity
groupconjugatedtothefluorophoreviaanamidebondquenched ofaldehyde.dThedatawithoutbackgroundcorrection.
thefluorophore’sfluorescence.
Scheme1
Figure1. Fluorescenceemissionspectra((cid:236)ex250nm)ofaldehyde7(0),
We prepared candidate fluorogenic aldehydes and their aldols
(5-12,Scheme2)byusingaseriesoffluorophoresandcompared a2l-dPorlOH8-(499),%an5d0mfluMorsoopdhiourme 1p3ho(sOph)ataet,5pH(cid:237)M7.0.in 0.5% CH3CN-0.5%
theirfluorescence(Table1).Aldehyde7,preparedastheamideof
9-aminophenanthrene(13),wasthemostpromisingofthealdehydes bufferandinorganicsolvents,andthefluorescenceintensityof8
prepared. The reaction product, aldol 8, showed (cid:24)80-fold higher didnotvarywithinthepHrangeof5.3-8.0inaqueousbuffer.In
fluorescence((cid:236)ex250nm,(cid:236)em380nm)thanaldehyde7inaqueous addition,thefluorescenceofaldol8differedfromthatoffluoro-
buffer (pH 7.0) and (cid:24)20-fold higher ((cid:236)ex 265 nm, (cid:236)em 385 nm) phore13asshowninFigure1.Aldol10showed(cid:24)20-foldhigher
inDMSO.Althoughthefluorescenceintensityvariedwithsolvent, fluorescence than aldehyde 9 in DMSO. In contrast, aldehyde11
aldol8/aldehyde7hadanexcellentfluorogenicrangeinaqueous showedhigherfluorescencethanaldol12at(cid:236)ex260nmand(cid:236)em
3692 9 J.AM.CHEM.SOC. 2004,126,3692-3693 10.1021/ja049641aCCC:$27.50 ©2004AmericanChemicalSociety
COMMUNICATIONS
Scheme3
Figure3. Fluorescence assay of reduction of aldehyde 7 with alcohol
Table2. FluorescenceofCompounds14-16a dehydrogenase(ADH)fromThermoanaerobiumbrockii.‡(A)Timecourse,
(B)emissionspectra((cid:236)ex250nm)at50min.Conditions: (a)[ADH]0.235
solvent (cid:236)ex (cid:236)em cb fluorescence foldc unit/mL, [NADPH] 40 (cid:237)M, [aldehyde 7] 12.5 (cid:237)M, 0.5% CH3CN-0.5%
14 DMSO 265 385 5 6.5(cid:2)103 13 2-PrOH-99% 50 mM sodium phosphate, pH 7.0; (b) reaction without
DMF 265 385 5 2.6(cid:2)103d 6 additionofNADPH;(c)reactionusing3insteadof7;(d)reactionwithout
pH7 250 380 5 4.4(cid:2)103 77 ADH; (e) reaction without ADH and NADPH. ‡The UV (340 nm) and
15 DMSO 265 385 5 1.3(cid:2)104 26 fluorescence((cid:236)em450nm)studiessuggestedthatthisenzymecontained
DMF 265 385 5 5.6(cid:2)103d 12 somereducingcofactor.
pH7 250 380 5 3.2(cid:2)103d 57 fashiontodirectlyfollowthereductionofthealdehyde.Formation
16 DMSO 265 385 5 5.8(cid:2)103 12 of less than 0.2 (cid:237)M of product 16 was readily detected in a 100
DMF 265 385 5 2.7(cid:2)103d 6
pH7 250 380 5 3.0(cid:2)103d 53 (cid:237)L-scalereactionina96-wellplate.
Wehavedevelopedfluorogenicaldehydesthatcanbeusedfor
a,bSeeTable1legend.cfold)fluorescenceintensityof14,15,or16/
monitoring reactions through increased fluorescence. These fluo-
fluorescenceintensityofaldehyde7.dSeeTable1legend.
rogenic aldehydes should be useful for screening of catalysts in
approachesusinglibraries.3,9,10Ourstrategyforaccessingfluoro-
genic aldehydes should also be applicable to the preparation of
fluorogenic substrates that allow the transformations of other
functionalgroupstobedirectlymonitored.
Acknowledgment. ThisstudywassupportedinpartbytheNIH
(CA27489)andTheSkaggsInstituteforChemicalBiology.
SupportingInformationAvailable: Fluorescencespectra,graphs
ofstandardsof8and16,synthesisandcharacterizationofcompounds
(PDF).ThismaterialisavailablefreeofchargeviatheInternetathttp://
Figure2. Fluorescenceassayofantibody38C2-catalyzedaldolreaction pubs.acs.org.
ofacetoneandaldehyde7.Conditions: [antibody]2(cid:237)M(activesite),[7]
50(cid:237)M,[acetone]5%(v/v)(680mM),2.5%CH3CN-2.5%2-PrOH/PBS References
(pH7.4).0: 38C2;O: nonaldolaseantibodyIgG(control);]: reaction
with38C2intheabsenceofacetone;4: reactionwithoutantibody(blank). (1) (a)Matayoshi,E.;Wang,G.T.;Krafft,G.;Erickson,J.Science1990,
247, 954. (b) Taylor, S. J.; Morken, J. P. Science 1998, 280, 267. (c)
RFU)relativefluorescenceintensity. Reetz,M.T.;Kuhling,K.M.;Deege,A.;Hinrichs,H.;Belder,D.Angew.
Chem.,Int.Ed.2000,39,3891.(d)Copeland,G.T.;Miller,S.J.J.Am.
450nm,although12showedaslightlyhigherfluorescenceat(cid:236)ex
Chem.Soc.2001,123,6496.(e)Das,G.;Talukdar,P.;Matile,S.Science
260 nm and (cid:236)em 380 nm. These results indicate that the proper 2002,298,1600.(f)Stauffer,S.R.;Hartwig,J.F.J.Am.Chem.Soc.
2003,125,6977.(g)Konarzycka-Bessler,M.;Bornscheuer,U.Angew.
selectionoffluorophoresisimportantforthepreparationofuseful
Chem.,Int.Ed.2003,42,1418.
fluorogenicaldehydes. (2) Nishino,N.;Powers,J.J.Biol.Chem.1980,255,3482.List,B.;Barbas,
Toexaminetheapplicabilityofthefluorogenicaldehydestoother C.F.,III;Lerner,R.A.Proc.Natl.Acad.Sci.U.S.A.1998,95,15351.
Carlson,R.P.;Jourdain,N.;Reymond,J.-L.Chem.Eur.J.2000,6,4154.
reactions,aldehyde7wastransformedtoaldol14byaldolreaction Svensson,R.;Greno,C.;Johansson,A.;Mannervik,B.;Morgenstern,R.
withhydroxyacetone,toallylalcohol15byIn-mediatedallylation,7 Anal. Biochem. 2002, 311, 171. Onoda, M.; Uchiyama, S.; Endo, A.;
Tokuyama,H.;Santa,T.;Imai,K.Org.Lett.2003,5,1459.
and to alcohol 16 by reduction (Scheme 3). These products were (3) Tanaka,F.;Thayumanavan,R.;Barbas,C.F.,III.J.Am.Chem.Soc.2003,
allfluorescent(Table2),indicatingthatthelossof(cid:240)-conjugation 125,8523.
(4) Mase,N.;Tanaka,F.;Barbas,C.F.,III.Org.Lett.2003,5,4369.Tanaka,
between the aldehyde carbonyl and the aryl group is key to F.;Thayumanavan,R.;Mase,N.;Barbas,C.F.,III.TetrahedronLett.
fluorescence and that aldehyde 7 can be used as a fluorogenic 2004,45,325.
(5) Lakowicz,J.R.PrinciplesofFluorescenceSpectroscopy,2nded.;Kluwer
substrateformanyreactions. Academic: NewYork,1999;p80.Seealsoref1fandreferencestherein.
Tomonitorthetime-courseofanaldolreaction,westudiedthe (6) BenzaldehydehasanRband((cid:236)max328nminalcohol).Silverstein,R.
M.;Bassler,G.C.;Morrill,T.C.SpectrometricIdentificationofOrganic
reactionofacetoneandaldehyde7catalyzedbyaldolaseantibody
Compounds,5thed.;JohnWiley&Sons: NewYork,1991;p308.
38C28 (Figure 2). The reaction with antibody 38C2 showed a (7) Chan,T.H.;Yang,Y.J.Am.Chem.Soc.1999,121,3228.
(8) Wagner,J.;Lerner,R.A.;Barbas,C.F.,III.Science1995,270,1797.
significantincreaseinfluorescence,whilereactionwithacontrol
Tanaka,F.;Barbas,C.F.,III.J.Immunol.Methods2002,269,67.
antibody,reactionwithoutacetone,andreactionwithoutantibody (9) Nakadai, M.; Saito, S.; Yamamoto, H. Tetrahedron 2002, 58, 8167.
Kofoed,J.;Nielsen,J.;Reymond,J.-L.Bioorg.Med.Chem.Lett.2003,
allshowedlittleornoincreaseinfluorescence.Catalyticreduction
13,2445.Tanaka,F.;Barbas,C.F.,III.J.Am.Chem.Soc.2002,124,
of7withalcoholdehydrogenaseinthepresenceofNADPHwas 3510.Gildersleeve,J.;Varvak,A.;Atwell,S.;Evans,D.;Schultz,P.G.
successfully monitored by observing an increase in fluorescence Angew.Chem.,Int.Ed.2003,42,5971.Tanaka,F.;Fuller,R.;Shim,H.;
Lerner,R.A.;Barbas,C.F.,III.J.Mol.Biol.2004,335,1007.Fong,S.;
(Figure3).Althoughreactionswiththisenzymecanbemonitored Machajewski,T.D.;Mak,C.C.;Wong,C.-H.Chem.Biol.2000,7,873.
by changes in UV (340 nm) and fluorescence ((cid:236)em 450 nm) of (10) Tsukiji,S.;Pattnaik,S.B.;Suga,H.Nat.Struct.Biol.2003,10,713.
NADPH,fluorogenicaldehyde7canbeusedinacomplementary JA049641A
J.AM.CHEM.SOC.9VOL.126,NO.12,2004 3693
Design and Use of Fluorogenic Aldehydes for Monitoring the Progress of
Aldehyde Transformations
Fujie Tanaka,* Nobuyuki Mase, Carlos F. Barbas, III*
The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California
92037
Corresponding author e-mail: carlos@scripps.edu, ftanaka@scripps.edu
Supporting Information
Fluorescence Spectra ----------------------------------------- S2
Graphs of Standards of 8 and 16 --------------------------- S6
Synthesis and Characterization of Compounds ----------- S7
Hard copy of NMR ------------------------------------------- S11
S1
Fluorescence Spectra. Fuorescence was recorded on Spectra Max Gemini (Molecular Devices)
using 100 µL of a solution in a 96-well polypropyrene plate (Thomson Instrument Company
923175) at 26 °C. The data are shown after background correction.
60000
y
sit
n
e
nt 40000
e i
c
n
e
c
es 20000
or
u
Fl
0
350 400 450
Emission wavelength (nm) (Excitation 282 nm)
Figure S1. Fluorescence emission spectra (λex 282 nm) of 1, 2, and 2-aminonaphthalene in 0.5%
CH CN-0.5% 2-PrOH-99% DMSO. Square, 1 (50 µM); triangle, 2 (50 µM); circle, 2-
3
aminonaphthalene (50 µM).
6000
sity 5000
n
e
nt 4000
e i
nc 3000
e
c
s
e 2000
or
u
Fl 1000
0
320 340 360 380 400 420 440 460
Emission wavelength (nm) (Excitation 250 nm)
Figure S2. Fluorescence emission spectra (λex 250 nm) of 1, 2, and 2-aminonaphthalene in 0.5%
CH CN-0.5% 2-PrOH-99% (50 mM Na phosphate, pH 7.0). Square, 1 (50 µM); triangle, 2 (50
3
µM); circle, 2-aminonaphthalene (50 µM).
S2
10000
y 8000
sit
n
e
nt 6000
e i
c
n
e 4000
c
s
e
or
u 2000
Fl
0
320 340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 265 nm)
Figure S3. Fluorescence emission spectra (λex 265 nm) of 7, 8, and 13 in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMSO. Square, 7 (5 µM); triangle, 8 (5 µM); circle, 13 (5 µM).
4000
y
sit 3000
n
e
nt
e i 2000
c
n
e
c
es 1000
or
u
Fl
0
320 340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 265 nm)
Figure S4. Fluorescence emission spectra (λex 265 nm) of 7, 8, and 13 in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMF. Square, 7 (5 µM); triangle, 8 (5 µM); circle, 13 (5 µM).
10000
sity 8000
n
e
nt 6000
e i
c
n
ce 4000
s
e
or
u 2000
Fl
0
250 260 270 280 290 300 310 320 330
Excitation wavelength (nm) (Emission 385 nm)
Figure S5. Fluorescence excitation spectra (λem 385 nm) of 7, 8, and 13 in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMSO. Square, 7 (5 µM); triangle, 8 (5 µM); circle, 13 (5 µM).
S3
5000
sity 4000
n
e
nt 3000
e i
c
n
e 2000
c
s
e
or
u 1000
Fl
0
250 260 270 280 290 300 310 320 330
Excitation wavelength (nm) (Emission 385 nm)
Figure S6. Fluorescence excitation spectra (λem 385 nm) of 7, 8, and 13 in 0.5% CH CN-0.5% 2-
3
PrOH-99% (50 mM Na phosphate, pH 7.0). Square, 7 (5 µM); triangle, 8 (5 µM); circle, 13 (5
µM).
50000
sity 40000
n
e
nt 30000
e i
c
n
ce 20000
s
e
or
u 10000
Fl
0
340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 315 nm)
Figure S7. Fluorescence emission spectra (λex 315 nm) of 9, 10, and 4-(1H-benzimidazol-2-
yl)aniline in 0.5% CH CN-0.5% 2-PrOH-99% DMSO. Square, 9 (5 µM); triangle, 10 (5 µM);
3
circle, 4-(1H-benzimidazol-2-yl)aniline (5 µM).
S4
6000
y
sit
n
e
e int 4000
c
n
e
c
es 2000
or
u
Fl
0
320 340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 265 nm)
Figure S8. Fluorescence emission spectra (λex 265 nm) of 14 (5 µM) in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMSO.
15000
y
sit
n
e 10000
nt
e i
c
n
e
c
s 5000
e
or
u
Fl
0
320 340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 265 nm)
Figure S9. Fluorescence emission spectra (λex 265 nm) of 15 (5 µM) in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMSO.
6000
y
sit 5000
n
e
nt 4000
e i
c 3000
n
e
c
s 2000
e
or
u 1000
Fl
0
320 340 360 380 400 420 440 460 480
Emission wavelength (nm) (Excitation 265 nm)
Figure S10. Fluorescence emission spectra (λex 265 nm) of 16 (5 µM) in 0.5% CH CN-0.5% 2-
3
PrOH-99% DMSO.
S5
nm) 10000 m) 2500 y = 2270.231x + 90.592
385 8000 85 n r2 = 0.995
em m 3 2000
λnm, 6000 λm, e 1500
65 4000 5 n 1000
2 6
ex x 2
λFU ( 2000 λU (e 500
R 0 RF 0
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1
8 (µM) 8 (µM)
Figure S11. Standard of aldol 8 in 0.5% CH CN-0.5% 2-PrOH-99% DMSO.
3
m)
n y = 2105.942x + 48.084
5 2000 2
8 r = 0.994
3
m
e 1500
λ
m,
n
5 1000
6
2
x
e 500
λ
U (
F
R 0
0 0.2 0.4 0.6 0.8 1
16 (µM)
Figure S12. Standard of alcohol 16 in 0.5% CH CN-0.5% 2-PrOH-99% DMSO.
3
S6
3-(4-Formylphenyl)-N-naphthalen-2-yl-propionamide (1). A mixture of 3-(4-
formylphenyl)propionic acid (70.0 mg, 0.393 mmol), 2-aminonaphthalene (57.1 mg, 0.399 mmol),
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (109.5 mg, 0.571 mmol), and
DMAP (1.0 mg, 0.008 mmol) in CH Cl (8.0 mL) was stirred at room temperature for 2.5 h. The
2 2
reaction mixture was added to H O and extracted with CH Cl . The organic layers were washed
2 2 2
with brine, dried over MgSO , filtered, concentrated in vacuo, and flash chromatographed
4
(EtOAc/hexane = 2:3) to afford 1 (83.5 mg, 70%). 1H NMR (400 MHz, CDCl ): δ 9.98 (s, 1H),
3
8.17 (s, 1H), 7.84-7.77 (m, 5H), 7.48-7.36 (m, 5H), 7.22 (s, 1H), 3.19 (t, J = 7.6 Hz, 2H), 2.76 (t, J
= 7.6 Hz, 2H). MALDI-FTMS: calcd for C H NO (MH+) 304.1332, found 304.1333.
20 18 2
3-[4-(1-Hydroxy-3-oxobutyl)phenyl]-N-naphthalen-2-yl-propionamide (2). Aldol 2
was prepared by the proline-catalyzed aldol reaction of acetone and aldehyde 1 as described
previously.S1 1H NMR (500 MHz, CDCl ): δ 8.15 (s, 1H), 7.78-7.75 (m, 3H), 7.47-7.35 (m, 3H),
3
7.30-7.22 (m, 5H), 5.12 (ddd, J = 2.3 Hz, 2.6 Hz, 7.3 Hz, 1H), 3.27 (d, J = 2.3 Hz, 1H), 3.08 (t, J =
6.2 Hz, 2H), 2.87 (dd, J = 7.3 Hz, 14.1 Hz, 1H), 2.79 (dd, J = 2.6 Hz, 14.1 Hz, 1H), 2.70 (t, J = 6.2
Hz, 2H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl ): δ 209.2, 170.4, 140.8, 140.1, 135.1, 133.8,
3
130.6, 128.7, 128.6, 127.6, 127.5, 126.5, 126.0, 125.0, 119.7, 116.6, 69.6, 51.8, 39.4, 31.1, 30.7.
MALDI-FTMS: calcd for C H NO Na (MNa+) 384.1570, found 384.1579.
23 23 3
4-Formyl-N-naphthalen-2-yl-benzamide (3). 1H NMR (400 MHz, CDCl ): δ 10.1 (s,
3
1H), 8.36 (brs, 1H), 8.10-8.00 (m, 4H), 7.88-7.82 (m, 3H), 7.60 (dd, J = 2.0 Hz, 8.8 Hz, 1H), 7.53-
7.43 (m, 2H). MALDI-FTMS: calcd for C H O N (MH+) 276.1019, found 276.1022.
18 14 2
4-(1-Hydroxy-3-oxobutyl)-N-naphthalen-2-yl-benzamide (4). 1H NMR (400 MHz,
CDCl -CD OD): δ 9.21 (s, 1H x 0.7), 8.32 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.83-7.78 (m, 3H),
3 3
7.66 (dd, J = 2.0 Hz, 8.8 Hz, 1H), 7.49-7.40 (m, 2H), 7.46 (d, J = 8.2 Hz, 2H), 5.19 (dd, J = 3.8 Hz,
9.1 Hz, 1H), 2.99 (s, 1H), 2.91 (dd, J = 8.9 Hz, 16.7 Hz, 1H), 2.79 (dd, J = 3.7 Hz, 16.7 Hz, 1H),
2.21 (s, 3H). MALDI-FTMS: calcd for C H NO (MH+) 334.1438, found 334.1440.
21 20 3
3-(4-Formylphenyl)-N-naphthalen-1-yl-propionamide (5). 1H NMR (400 MHz,
CDCl -CD OD): δ 9.98 (s, 1H), 7.86-7.83 (m, 3H), 7.71 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 7.3 Hz,
3 3
S7
1H), 7.57 (d, J = 8.2 Hz, 1H), 7.50-7.38 (m, 5H), 3.20 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 7.6 Hz, 2H).
MALDI-FTMS: calcd for C H NO (MH+) 304.1332, found 304.1331.
20 18 2
3-[4-(1-Hydroxy-3-oxobutyl)-phenyl]-N-naphthalen-1-yl-propionamide (6). 1H
NMR (400 MHz, CDCl -CD OD): δ 7.85 (m, 1H), 7.75-7.68 (m, 2H), 7.57 (m, 1H), 7.49-7.43 (m,
3 3
3H), 7.33-7.27 (m, 4H), 5.13 (dd, J = 3.2 Hz, 9.1 Hz, 1H), 3.11 (t, J = 7.6 Hz, 2H), 2.89 (dd, J =
9.1 Hz, 17 Hz, 1H), 2.80 (t, J = 7.6 Hz, 2H), 2.77 (dd, J = 3.2 Hz, 17 Hz, 1H), 2.19 (s, 3H).
MALDI-FTMS: calcd for C H NO Na (MNa+) 384.1570, found 384.1578.
23 23 3
3-(4-Formylphenyl)-N-phenanthren-9-yl-propionamide (7). 1H NMR (400 MHz,
CDCl -CD OD): δ 9.99 (s, 1H), 8.71 (d, J = 8.8 Hz, 1H), 8.63 (d, J = 7.9 Hz, 1H), 8.03 (s, 1H),
3 3
7.88-7.84 (m, 3H), 7.67-7.49 (m, 7H), 3.24 (t, J = 7.6 Hz, 2H), 2.91 (t, J = 7.6 Hz, 2H). 13C NMR
(100 MHz, CDCl -CD OD): δ 192.5, 171.8, 148.3, 134.5, 131.2, 130.8, 130.2, 130.0, 129.1, 128.8,
3 3
128.3, 127.5, 126.7, 126.5, 126.3, 122.8, 122.5, 122.2, 121.9, 37.6, 31.6. MALDI-FTMS: calcd for
C H NO (MH+) 354.1488, found 354.1488.
24 20 2
3-[4-(1-Hydroxy-3-oxobutyl)phenyl]-N-phenanthren-9-yl-propionamide (8). 1H
NMR (500 MHz, CDCl ): δ 8.69 (d, J = 8.1 Hz, 1H), 8.60 (d, J = 7.7 Hz, 1H), 8.13 (s, 1H), 7.83
3
(d, J = 7.3 Hz, 1H), 7.66-7.53 (m, 5H), 7.38 (s, 1H), 7.34-7.27 (m, 4H), 5.14 (m 1H), 3.30 (1H),
3.15 (t, J = 7.6 Hz, 2H), 2.88-2.75 (m, 2H), 2.84 (t, J = 7.6 Hz, 2H), 2.17 (s, 3H). 13C NMR (100
MHz, CDCl ): δ 209.2, 171.0, 140.9, 140.1, 131.6, 131.0, 130.0, 128.7, 128.6, 127.0, 126.9, 126.7,
3
126.3, 126.1, 123.3, 122.3, 121.2, 121.1, 69.6, 51.8, 39.3, 31.4, 30.7. MALDI-FTMS: calcd for
C H NO Na (MNa+) 434.1727, found 434.1732.
27 25 3
N-[4-(1H-Benzoimidazol-2-yl)phenyl]-3-(4-formylphenyl)-propionamide (9). 1H
NMR (400 MHz, CDCl -CD OD): δ 9.95 (s, 1H), 8.01 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 7.8 Hz,
3 3
2H), 7.69 (d, J = 8.5 Hz, 2H), 7.62-7.60 (m, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.28-7.25 (m, 2H), 3.14
(t, J = 7.6 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H). MALDI-FTMS: calcd for C H N O (MH+)
23 20 3 2
370.1550, found 370.1548.
N-[4-(1H-Benzoimidazol-2-yl)phenyl]-3-(4-formylphenyl)-propionamide (10). 1H
NMR (400 MHz, CDCl -CD OD): δ 8.01 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.65-7.56
3 3
(m, 2H), 7.30-7.23 (m, 6H), 5.10 (m, 1H), 3.04 (t, J = 8.0 Hz, 2H), 2.93 (m, 1H), 2.76 (m, 1H), 2,70
S8
Description:catalysts as well as for characterization of catalysts on a small scale.1,2 To test this hypothesis, we prepared the aldehyde 1 and aldol 2 shown in