ebook img

Design and Test of Digital Circuits by Quantum-DOT Cellular Automata PDF

369 Pages·2007·5.65 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design and Test of Digital Circuits by Quantum-DOT Cellular Automata

Design and Test of Digital Circuits by Quantum-Dot Cellular Automata JingHuang, FabrizioLombardi NortheasternUniversity Department ofElectrical and ComputerEngineering 360HuntingtonAv. Boston,MA, 02115 September25,2007 Contents Preface xiii Chapter1 Introduction 1 1.1 Challenges 2 1.2 PreviousWork 3 1.3 Contributions 4 1.4 BookOutline 7 References 8 Chapter2 NanoDevicesandArchitecturesOverview 11 2.1 NanoelectronicDevices 12 2.1.1 CarbonNanotube-basedDevices 12 2.1.2 Nanowires 14 2.1.3 MolecularElectronicDevices 15 2.1.4 Single-ElectronDevices 17 2.1.5 ResonantTunnelingDiodes 21 2.1.6 SpinTransistors 22 2.2 Nano-scaleCrossbars 23 2.3 Architectures 25 2.3.1 SETArchitecture 26 2.3.2 RTDArchitecture 26 2.3.3 NanoFabricsArchitecture 27 2.3.4 NanoPLA 29 References 33 vii viii Contents Chapter3 QCA 37 3.1 QCAImplementation 42 3.1.1 MetalQCA 42 3.1.2 MolecularQCA 44 3.1.3 MagneticQCA 45 3.2 Clocking 46 3.3 MolecularAttachment 49 3.4 PowerGainandDissipation 51 3.5 QCASimulators 53 3.5.1 QCADesigner 54 3.6 QCACircuits 56 3.7 ComparisonofNanotechnologyDevices 61 References 64 Chapter4 QCACombinationalLogicDesign 69 4.1 Gate-basedCombinationalLogicDesign 69 4.1.1 Gate-basedDesignofQCAwithExistingCommer- cialSynthesisTools 71 4.2 LogicSynthesis 73 4.2.1 AND/OR-basedLogicSynthesis 73 4.2.2 Muroga’sMV-basedLogicSynthesis 75 4.2.3 MAjorityLogicSynthesizer(MALS) 75 4.3 StructuralDesign 75 4.4 AND-OR-Inverter(AOI)Gate 76 4.4.1 AOIGateCharacterization 76 4.4.2 DefectCharacterizationoftheAOIGate 78 4.4.3 LogicSynthesisUsingtheAOIGate 82 4.4.4 Conclusion 87 References 89 Chapter5 Logic-LevelTestingandDefectCharacterization 91 5.1 Logic-LevelTesting 91 5.1.1 Stuck-atTestPropertiesofMV-basedCircuits 92 5.1.2 TestSetforMVs 95 5.1.3 C-TestabilityofMV-basedDesigns 96 5.2 DefectCharacterizationofDevices 99 5.2.1 SimulationEngines 101 5.2.2 MVDefectAnalysis 102 5.2.3 InterconnectDefectAnalysis 107 Contents ix 5.2.4 ProbabilisticAnalysisandTesting 111 5.2.5 DefectAnalysisandTestingofQCACircuits 116 5.2.6 ScalinginthePresenceofDefects 133 5.2.7 Conclusion 140 References 141 Chapter6 Two-DimensionalSchemesforClocking/TimingofQCACircuits 143 6.1 ClockingAnalysis 144 6.2 Two-DimensionalQCAClocking 146 6.3 Two-DimensionalWaveQCAClocking 151 6.4 ExamplesofQCACircuits 156 6.5 FeedbackPaths 159 6.6 SimulationResults 160 6.6.1 2-to-1Multiplexer 161 6.6.2 One-bitFullAdder 161 6.6.3 RSFlip-flop 161 6.7 Conclusion 162 References 168 Chapter7 Tile-BasedQCADesign 171 7.1 QCADesignbyTiling 174 7.2 FullyPopulatedGridAnalysis 176 7.3 TilesBasedon3 3Grids 179 × 7.3.1 OrthogonalTile 179 7.3.2 DoubleFan-outTile 183 7.3.3 BaselineTile 187 7.3.4 Fan-inTile 190 7.3.5 TripleFan-outTile 192 7.4 AnalysisofResults 195 7.4.1 ConfigurationSelection 196 7.5 LogicAnalysis 196 7.6 ExamplesofQCACircuits 200 7.6.1 One-bitFullAdder 200 7.6.2 ParityChecker 201 7.6.3 2-to-4Decoder 206 7.6.4 2-to-1MUX 208 7.7 Conclusion 210 References 211 x Contents Chapter8 SequentialCircuitDesigninQCA 213 8.1 RSFlip-flopandDFlip-flopinQCA 214 8.1.1 DefectCharacterizationofRSFlip-flop 216 8.2 TimingConstraintsinQCASequentialDesign 219 8.2.1 TimingConstraintsUsingRSFlip-flops 220 8.2.2 TimingConstraintsusingDFlip-flops 221 8.3 AlgorithmforClockingZoneAssignment 221 8.3.1 AlgorithmOutline 221 8.3.2 AlgorithmDetail 223 8.3.3 AlgorithmforCoplanarDevice 226 8.3.4 ExamplesofQCACircuits 227 8.4 DefectCharacterizationofQCASequentialCircuits 229 8.5 DiscussionandConclusion 239 References 246 Chapter9 QCAMemory 247 9.1 Introduction 247 9.2 ReviewofQCAMemories 249 9.3 ParallelMemoryArchitecture 252 9.3.1 ProposedParallelQCAMemoryDesign 252 9.3.2 ClockingConsiderations 255 9.3.3 DiscussionandComparison 257 9.3.4 Simulations 261 9.4 SerialMemoryArchitecture 263 9.4.1 MemoryDesignbyTiling 263 9.4.2 ClockingandTiming 266 9.4.3 QCATiles 268 9.4.4 Simulation 271 9.4.5 Conclusion 285 References 285 Chapter10ImplementingUniversalLogicinQCA 287 10.1 UniversalGate 288 10.2 UniversalGateDesigns 289 10.2.1 AND/OR-basedSynthesis 290 10.2.2 MV-basedSynthesis 290 10.3 Memory-basedLUT 294 10.4 Multiplexer-basedLUT 298 10.5 DiscussionandConclusion 301 Contents xi References 302 Chapter11QCAModelforComputingandEnergyAnalysis 305 11.1 ReviewonReversibleComputing 306 11.2 MechanicalModel 308 11.2.1 ModelofQCACell 309 11.2.2 SteadyStateEnergyofQCADevices 312 11.3 EntropyandDissipationAnalysis 315 11.3.1 OperationoftheMechanicalCell 315 11.4 LandauerandBennettClockingSchemes 320 11.5 Conclusion 323 References 325 Chapter12FaultToleranceofReversibleQCACircuits 327 12.1 HardwareRedundancyTechniques 328 12.2 MajorityMultiplexinginQCA 333 12.2.1 FaultTolerantCapacity 334 12.2.2 RestorationSpeedofMultiplexing 336 12.2.3 Summary 338 12.3 ReversibleComputingandFaultTolerance 339 12.4 EnergyDissipationofaReversibleMVMultiplexingSystem 341 12.4.1 SystemWithoutFault 341 12.4.2 DissipationinFaultCorrection 342 12.5 Conclusion 344 References 347 Chapter13ConclusionandFutureWork 349 App.A PreliminaryforQCAMechanicalModel 353 References 356 App.B ValidationofMechanicalModel 357 B.1 ValidationofStaticEnergyAnalysis 357 B.2 ValidationofDissipationAnalysis 358 References 360 App.C EnergyDissipationAnalysisofCircuitUnits 363 AbouttheAuthors 367 xii Contents Preface Emergingtechnologieshavebeen a topic ofgreatinterestoverthe last few years; aspredictedbytheTechnologyRoadmapoftheSemiconductorIndustry,CMOSas today’s dominanttechnologyfor manufacturingcomputersystems by Very Large Scale Integration (VLSI) will be encountering serious hurdles in the future. The projected expectations in terms of device density, power dissipation and perfor- mancenecessitateradicallydifferenttechnologiesthatprovideinnovativesolutions to integration as well as computing. So-called emerging technologies have been advocatedfromdisparatesources(bothindustryandacademia)tomeetthese am- bitiousobjectives,whilerealizingtheever-higherdemandsposedbytheubiquitous natureofcomputinginmodernsociety. This book addresses one of the most interesting among emergingtechnolo- giesfor digitaldesign,Quantum-dotCellular Automata(QCA). Overthe last few decadessinceitsinceptionattheUniversityofNotreDame,QCAhasdramatically evolvedinadynamicandexcitingfieldofinvestigationwithcontributorsfromall overthe world. QCA is a challengingtechnologythat due to its uniquestructural andoperationalfeaturesrepresentsarevolutionarydeparturefromcurrentpractice. QCA relies on principlesthat are fundamentallydifferentfrom CMOS and there- fore,it mayofferunprecedentedadvantagesto solve those challengesthatare ex- pectedtooccurattheendofthetechnologyroadmap.Forexample,asitsoperation isbasedonCoulombicinteractions,designersofQCA-basedcircuitsmustbemade awareoftheimplicationsthatselectiveproperties(suchasthosebasedonswitching and clocking) may come into play once a QCA circuit is embedded on a planar layout. Numerous journal and conference articles have appeared in the technical literature; the last few years have also seen an increased number of professional meetingsinwhichmanysessionshavebeendevotedtoadvancesinQCA.However, QCA necessitates an understandingof physicaland electrical phenomenathat are notreadily available from a single source. This book providea focused reference by which up-to-date topics are treated in detail with direct impact on research xiii xiv DesignandTestofDigitalCircuitsbyQuantum-DotCellularAutomata and practical implementations; moreover, its contents reflect an interdisciplinary approach by which scientists and engineers can mutually benefit. Only essential mathematics and physics are presented, while devoting substantial coverage to design and manufacturing issues as well as related topics such as testing, defect modelingandperformance. In this book, we have combined topics that cover the whole spectrum of interests in QCA: starting from a basic characterization at device-level, circuits andmodulardigitalsystems(suchasmemoriesanduniversallogic)areintroduced to the reader within a systematic and intuitive presentation that include examples as well as comparison metrics. The organization is structured such that starting withanintroductiontoemergingtechnologies,up-to-datefundamentalsofQCAare reportedtoengagethereaderintothemostrecentadvancesofthisfieldasreflected inthe detailedtreatmentofsequentialandcombinationalQCA circuits. Themain emphasisis,however,ondesignandtesttoincludedigitalQCAcircuitsandmodels forcharacterizingamongthemanyattributespowerconsumption,defectdiagnosis, modularity and fault tolerance. QCA can encompass multiple desirable features within different technological frameworks (based on metal as well as molecular implementations) and new computational paradigms (such as processing-by-wire andstorage-by-motion). The material covered in the chapters requires a basic understanding of physics, mathematics and electrical/electronic engineering, as commonly made availableinanundergraduatedegreeprogram.Thisbookcanthereforebeusedasa referenceaswellastextbookforseniorelectiveandgraduatecoursesinnanotech- nology,withanemphasisonemergingtechnologies.Advancedresearcherswillalso find this book interesting as it provides a detailed treatment of QCA and issues involvedin integratingbasic devicefunctionalities(combinationalandsequential) intoworkingcircuitsandsystems.NovelresearchdirectionsinQCAarealsopro- videdfortheinterestedtechnicalinvestigator.Theauthorsofeachchapterhavean in-depthknowledgeofQCAasreflectedintheirstudiesandworkexperience;this bookistheresultoftheauthors’researchanddevelopmentinQCAovermorethan fiveyearsassupportedbyfederalagenciesandindustrialpartners. This book has been made possible by the collaborationof all authors;also, the authors would like to acknowledge enlightening discussions with Craig Lent (UniversityofNotreDame),DougTougaw(ValparaisoUniversity),KonradWalus (University of British Columbia), Cecilia Metra (University of Bologna), Salva- tore Pontarelli (University of Rome Tor Vergata), Marya Libermann (University of Notre Dame), Niraj Jha (Princeton University), Hamid Hashempour, Sanjukta Bhanja(UniversityofSouthFlorida)andJoseFortes(UniversityofFlorida).Their

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.