Design and Noise Study of a Low-Drag Wind Turbine for Airborne Power Applica- tions A Numerical & Experimental Assessment B. Van Den Kieboom t f el D t ei t si r e v ni U e h c s ni h c e T D N S L -D ESIGN AND OISE TUDY OF A OW RAG W T A P IND URBINE FOR IRBORNE OWER A PPLICATIONS A NUMERICAL & EXPERIMENTAL ASSESSMENT by B.VanDenKieboom Forobtainingthedegreeof MasterofScience inAerospaceEngineering attheWindEnergyResearchGroup,FacultyofAerospaceEngineering,DelftUniversityofTechnology, tobedefendedpubliclyonWednesdayMay10,2017at09:30AM. Supervisor: Ir.W.A.Timmer TUDelft Dr.-ing.R.Schmehl TUDelft Thesiscommittee: dr.ir.B.W.vanOudheusden, TUDelft MSc.J.Peschel, KitepowerBV ThisthesisisconfidentialandcannotbemadepublicuntilMay10,2017. Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. Acknowledgments IcanstillrememberthedayIwalkedintotheofficeofDr.-ing.R.Schmehltoaskforpossiblethesisoptions. ItoldhimthatIwasinterestedinkitepowerandrotoraerodynamics,andfromthis,hecameupwithoneof themostinterestingthesistopic(atleastinmyopinion).Iwouldliketothankhimforgivingmethisamazing opportunityandtobemysupervisorintheinitialphaseofmythesis. BesidesMr. SchmehlIwouldliketo thankIr.NandoTimmer,forbeingtheexpertonwindturbinedesignduringthisthesisproject,andfortaking overthesupervisionwhennecessary. Besidesmytwosupervisors,thisprojectwouldnothavebeenpossiblewithoutthehelpofKitepower.Aspe- cialgratitudegoesouttoKitepowerforgivingthisthesisprojectmoremeaning.Specialthanksto:Johannes, Joep,Bert,Roger,Bruno,Antonello,David,Anna,Roland,andBalázstomakethisprojectmoreinteresting andcreatinganencouragingworkingenvironment. Thankyou,Pietro,tocalculatethepowercurvesfordif- ferentkiteoptions.IhopemyworkwillhelpaccomplishtobuildthefirstcommercialAWEunit. Next, IwouldliketothankapersonthatIonlymetoverSkype, butgavemyresearchsomuchmorecon- tentandpointedmetothefactthatIneedalowdragwindturbine.Thankyou,Rob,foryourinterestingand valuableopiniononmyworkandsteeringmeinabetterdirection. Mygratitudegoesouttothepeopleofroom6.08formakingthetimeworkingonmythesissomuchmore enjoyable,Icouldnotwishforabettergrouptoworkwith. Thankyouforalwayslisteningtomyquestions andhelpingmewithunderstandingthingsbetterorfindingasolution. Specialthanksto: Pranav,Delphine, Reynard,Mustafa,Matteo,Ben,Jo,Marcos,Clara,Julia,Ivan,Roberto,Robin,Irene,Viktor,andLuca. The next group of people I need to thank are all the Belgians, Toine, Mikel, Lucas and Anna to make my studenttimesomuchmorethanstudying. SpecialthankstoMaarten,Fie,andMichielforproofreadingmy thesisandforcreatingawesomememoriesduringthis6,5yearsinDelft."ToIndustry..." And , last but by no means least, I would like to thank the people that are dearest to me. I would like to thankmyfamily,especiallymyparents,foralwayssupportingmeandhelpingmeoutwheretheycould. Fi- nally,IwouldliketothankmygirlfriendDeborah,foralwaysbeingthereduringthisthesisandsupportingme. Thankyou, BasVanDenKieboom Delft,May2017 iii Summary KitepowerBVisoneofthepioneeringcompaniesthatwantstosucceedintheairbornewindenergyindustry. Kitepower’sconceptmakesuseofLEIkiteswhichmoveinapumpingcycle,producingenergywhenreeled out,andconsumingafractionoftheenergywhenreeledin.Tosteerthekite,theymakeuseofakitecontrol unit(KCU)thatiscurrentlypoweredbybatteries.Thesebatterieslimitflyingtimeto2hoursanditisthegoal ofthisprojecttocomeupwithasolutiontothisproblem. ThesolutionchosenbyKitepowerBVistomountasmallhorizontalaxiswindturbineontopoftheKCU whichwillproduce44Wattofelectricalpower.Duringthisproject,twodesignmethodsarechosentodesign thiswindturbine. Thefirstisastandardbladeelementmomentumtheory(BEMT)whichisasimpletool todeterminetheperformanceofawindturbine. Besidesthebladeelementmomentumtheory, asecond methodwillbeusedwhichisthefreewakeliftingline(LL).Theliftinglinecanbeusedtosimulatedifferent inflowconditionssuchasyawangles.Itisnecessarytocreateawindturbinewithaminimalamountofdrag suchthattotalpowerproducedbythekitepowerconceptismaximised,thisissetasthesecondrequirement. Thelowdragwindturbineisdesignedwiththeuseofaloworderoptimiserwhichtestsallpossibledesignsto seewhichrotorperformsbest.Thereischosentomaketwodummydesignswhichcanbetestedinthewind tunneltovalidatethesoftwaresothatKitepowerBVinthefuturecandesigntheirownwindturbines.Atthe endofthework,afinaldesigniscreatedthatcomplieswiththerequirementsfromKitepowerBV. Thesmallwindturbineoperatesathighwindspeeds. Becauseofthesehighwindspeeds,thewindturbine willachievehighrotationalvelocities. Thisrotationalspeedresultsintonalnoises,forthisreason,noiseis investigated. Withasemi-empiricalmodeldevelopedbyBrooksetal. thesoundpressurelevelofthewind turbinecanbecalculated.ItusestheoutputconditionsfromtheBEMTorLLcodestocalculatethenoisein a1/3octavebandfrequency. Theaccuracyofthemodelisvalidatedusingwindtunnelexperimentaldata. Besidespredictingthesoundpressurelevelclosetothewindturbine,amodelisdevelopedbasedonthework ofDELTAtoquantifywhatthenoiselevelsareatnoisesensitivelocations. Thewindturbineshouldcomply withDutchnoiseregulations. A verification was performed before the wind tunnel test. From this verification, it was found that BEMT showedgoodagreement,whileLLdoesnotworkforlowReynoldnumberflows.ThisisbecauseoftheKutta- Jouwkowskyconditionwhichrelatesthecirculationatthec/4linetolift. DuetothelowReynoldsnumber flow,thebladewillseparateearlierwhichisaviolationoftheKuttacondition. Duringtheexperiment,itwasseenthattheBEMTresultsagreewiththeexperimentaldata. However,itwas observedthattheoptimumtipspeedratio(TSR)fortheBEMTislowerthanmeasured.Thishastwopossible reasons,thefirstisthemethodusedtomeasurethepower.Thesecondreasoncanbethedifferenceinairfoil polar.Thedragagreesforhigherwindspeedwiththeexperimentaldata.Whileforlowerwindspeedsthereis alargerdeviation.Thisispossibleduetotheresolutionofthemeasurementequipmentwithacombination oftheairfoildata.Whenlookingatthenoisedataitwasfoundthatthereareonlytonalpeaksattherotational frequency. Whenlookingattheshroudedcasetherearenotonalpeaksobserved. Finally,itwasfoundthat thevalidationbetweenBPMmodelandexperimentalresultisdifficultduetothelargedifferencebetween datasets. Thisisduetothelackofmeasurementquality. Thenoisemeasurementisnotperformedinan appropriatetunnelresultinginhighbackgroundnoise. However,similartrendswereobservedbetweenthe twodatasetsindicatingthatBPMworksbutrequiresmorevalidation. Thefinaldesignconsistofa12.75cmdiameterrotorwith4blades,whichproducetherequiredpower. The noisewasinvestigatedat30m/satoptimumTSRanditwasconcludedthatthenoisewillneverbeaproblem forresidentialareas. Withtheworkperformed,KitepowerBVwillbeabletodesigntheirownwindturbine basedontheoperatingconditions. v Contents ListofFigures xi 1 Introduction 1 I Background 3 2 ComparisonofPerformance&AeroacousticsModelsforWindTurbines 5 2.1 AirborneWindEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 WindTurbinePerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 BladeElementMomentumTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 LiftingLineTheory(FreeWake) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 VorticesLatticeMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 PanelMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.5 ComputationalFluidDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.6 PerformanceModelSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.7 LowReynoldsNumberAirfoils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 FundamentalsofAeroacousticsforWindTurbine. . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 BasicAcoustics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 TheoryofAeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 WindTurbineAeroacoustics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.4 Semi-empiricalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.5 ComputationalAeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.6 NoisePropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 DutchRegulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 WindTunnelExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 ProblemStatement 19 3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 II Methodology 21 4 AerodynamicPerformanceCalculationsModels 23 4.1 BladeMomentumElementTheory(BEMT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 ActuatorDiskModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 BladeElementMomentumTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 TheBEMTmodelandEngineeringCorrections . . . . . . . . . . . . . . . . . . . . . . 26 4.2 LiftingLineModel(LL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Flowfield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 VortexLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 VortexWake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.4 VortexStrengthCalculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 AirfoilData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 BoundaryLayerTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Xfoil/Rfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.3 VerificationofXfoilandRfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 vii viii CONTENTS 4.4 VerificationofBladeElementMomentumTheoryandLiftingLineMethod. . . . . . . . . . . . 40 4.4.1 VerificationoftheNREL5MW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.2 VerificationoftheSmallWindTurbine. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.3 VerificationoftheMiniWindTurbine . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.4 ConclusionVerification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 WindTurbineNoise 45 5.1 TonalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 AirfoilSelf-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2.1 TurbulentBoundaryLayer-TrailingEdgeNoise(TBL-TE)&S-SNoise . . . . . . . . . . 46 5.2.2 LaminarBoundaryLayer-VortexSheddingNoise(LBL-VS). . . . . . . . . . . . . . . . . 48 5.2.3 TrailingEdgeBluntnessNoise(TEB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.4 TipVortexNoise(TV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 TurbulenceInflowNoise(TIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 TotalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5 Directivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.6.1 VerificationofTBL-TENoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.2 VerificationofTEBNoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.3 VerificationLBL-VSNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 AtmosphericAttenuationModel 55 6.1 SphericalSpreading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 AtmosphericAbsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3 ReflectionandWind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.4 LocationofInterest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 III ResultsandDiscussion 61 7 WindTurbineDesign 63 7.1 Optimiser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2.1 FirstOptimisedDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.2.2 SecondOptimisedDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.3 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.3.1 ManufacturingoftheShroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3.2 ExperimentalTestSet-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.4 InflowAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8 Results 75 8.1 ExperimentalSet-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.1.1 TestSet-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.2.1 MechanicalPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.2.2 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.2.3 TonalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.3 ValidationofSoftware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3.1 ValidationPerformanceCodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3.2 ValidationAirfoilSelf-noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 FinalRedesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.4.1 NoiseoftheFinalWindTurbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.4.2 Tripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9 KitePower 99 9.1 PowerProfit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Description: