ebook img

Design and Noise Study of a Low-Drag Wind Turbine for Airborne Power Applications PDF

157 Pages·2017·9.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design and Noise Study of a Low-Drag Wind Turbine for Airborne Power Applications

Design and Noise Study of a Low-Drag Wind Turbine for Airborne Power Applica- tions A Numerical & Experimental Assessment B. Van Den Kieboom t f el D t ei t si r e v ni U e h c s ni h c e T D N S L -D ESIGN AND OISE TUDY OF A OW RAG W T A P IND URBINE FOR IRBORNE OWER A PPLICATIONS A NUMERICAL & EXPERIMENTAL ASSESSMENT by B.VanDenKieboom Forobtainingthedegreeof MasterofScience inAerospaceEngineering attheWindEnergyResearchGroup,FacultyofAerospaceEngineering,DelftUniversityofTechnology, tobedefendedpubliclyonWednesdayMay10,2017at09:30AM. Supervisor: Ir.W.A.Timmer TUDelft Dr.-ing.R.Schmehl TUDelft Thesiscommittee: dr.ir.B.W.vanOudheusden, TUDelft MSc.J.Peschel, KitepowerBV ThisthesisisconfidentialandcannotbemadepublicuntilMay10,2017. Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. Acknowledgments IcanstillrememberthedayIwalkedintotheofficeofDr.-ing.R.Schmehltoaskforpossiblethesisoptions. ItoldhimthatIwasinterestedinkitepowerandrotoraerodynamics,andfromthis,hecameupwithoneof themostinterestingthesistopic(atleastinmyopinion).Iwouldliketothankhimforgivingmethisamazing opportunityandtobemysupervisorintheinitialphaseofmythesis. BesidesMr. SchmehlIwouldliketo thankIr.NandoTimmer,forbeingtheexpertonwindturbinedesignduringthisthesisproject,andfortaking overthesupervisionwhennecessary. Besidesmytwosupervisors,thisprojectwouldnothavebeenpossiblewithoutthehelpofKitepower.Aspe- cialgratitudegoesouttoKitepowerforgivingthisthesisprojectmoremeaning.Specialthanksto:Johannes, Joep,Bert,Roger,Bruno,Antonello,David,Anna,Roland,andBalázstomakethisprojectmoreinteresting andcreatinganencouragingworkingenvironment. Thankyou,Pietro,tocalculatethepowercurvesfordif- ferentkiteoptions.IhopemyworkwillhelpaccomplishtobuildthefirstcommercialAWEunit. Next, IwouldliketothankapersonthatIonlymetoverSkype, butgavemyresearchsomuchmorecon- tentandpointedmetothefactthatIneedalowdragwindturbine.Thankyou,Rob,foryourinterestingand valuableopiniononmyworkandsteeringmeinabetterdirection. Mygratitudegoesouttothepeopleofroom6.08formakingthetimeworkingonmythesissomuchmore enjoyable,Icouldnotwishforabettergrouptoworkwith. Thankyouforalwayslisteningtomyquestions andhelpingmewithunderstandingthingsbetterorfindingasolution. Specialthanksto: Pranav,Delphine, Reynard,Mustafa,Matteo,Ben,Jo,Marcos,Clara,Julia,Ivan,Roberto,Robin,Irene,Viktor,andLuca. The next group of people I need to thank are all the Belgians, Toine, Mikel, Lucas and Anna to make my studenttimesomuchmorethanstudying. SpecialthankstoMaarten,Fie,andMichielforproofreadingmy thesisandforcreatingawesomememoriesduringthis6,5yearsinDelft."ToIndustry..." And , last but by no means least, I would like to thank the people that are dearest to me. I would like to thankmyfamily,especiallymyparents,foralwayssupportingmeandhelpingmeoutwheretheycould. Fi- nally,IwouldliketothankmygirlfriendDeborah,foralwaysbeingthereduringthisthesisandsupportingme. Thankyou, BasVanDenKieboom Delft,May2017 iii Summary KitepowerBVisoneofthepioneeringcompaniesthatwantstosucceedintheairbornewindenergyindustry. Kitepower’sconceptmakesuseofLEIkiteswhichmoveinapumpingcycle,producingenergywhenreeled out,andconsumingafractionoftheenergywhenreeledin.Tosteerthekite,theymakeuseofakitecontrol unit(KCU)thatiscurrentlypoweredbybatteries.Thesebatterieslimitflyingtimeto2hoursanditisthegoal ofthisprojecttocomeupwithasolutiontothisproblem. ThesolutionchosenbyKitepowerBVistomountasmallhorizontalaxiswindturbineontopoftheKCU whichwillproduce44Wattofelectricalpower.Duringthisproject,twodesignmethodsarechosentodesign thiswindturbine. Thefirstisastandardbladeelementmomentumtheory(BEMT)whichisasimpletool todeterminetheperformanceofawindturbine. Besidesthebladeelementmomentumtheory, asecond methodwillbeusedwhichisthefreewakeliftingline(LL).Theliftinglinecanbeusedtosimulatedifferent inflowconditionssuchasyawangles.Itisnecessarytocreateawindturbinewithaminimalamountofdrag suchthattotalpowerproducedbythekitepowerconceptismaximised,thisissetasthesecondrequirement. Thelowdragwindturbineisdesignedwiththeuseofaloworderoptimiserwhichtestsallpossibledesignsto seewhichrotorperformsbest.Thereischosentomaketwodummydesignswhichcanbetestedinthewind tunneltovalidatethesoftwaresothatKitepowerBVinthefuturecandesigntheirownwindturbines.Atthe endofthework,afinaldesigniscreatedthatcomplieswiththerequirementsfromKitepowerBV. Thesmallwindturbineoperatesathighwindspeeds. Becauseofthesehighwindspeeds,thewindturbine willachievehighrotationalvelocities. Thisrotationalspeedresultsintonalnoises,forthisreason,noiseis investigated. Withasemi-empiricalmodeldevelopedbyBrooksetal. thesoundpressurelevelofthewind turbinecanbecalculated.ItusestheoutputconditionsfromtheBEMTorLLcodestocalculatethenoisein a1/3octavebandfrequency. Theaccuracyofthemodelisvalidatedusingwindtunnelexperimentaldata. Besidespredictingthesoundpressurelevelclosetothewindturbine,amodelisdevelopedbasedonthework ofDELTAtoquantifywhatthenoiselevelsareatnoisesensitivelocations. Thewindturbineshouldcomply withDutchnoiseregulations. A verification was performed before the wind tunnel test. From this verification, it was found that BEMT showedgoodagreement,whileLLdoesnotworkforlowReynoldnumberflows.ThisisbecauseoftheKutta- Jouwkowskyconditionwhichrelatesthecirculationatthec/4linetolift. DuetothelowReynoldsnumber flow,thebladewillseparateearlierwhichisaviolationoftheKuttacondition. Duringtheexperiment,itwasseenthattheBEMTresultsagreewiththeexperimentaldata. However,itwas observedthattheoptimumtipspeedratio(TSR)fortheBEMTislowerthanmeasured.Thishastwopossible reasons,thefirstisthemethodusedtomeasurethepower.Thesecondreasoncanbethedifferenceinairfoil polar.Thedragagreesforhigherwindspeedwiththeexperimentaldata.Whileforlowerwindspeedsthereis alargerdeviation.Thisispossibleduetotheresolutionofthemeasurementequipmentwithacombination oftheairfoildata.Whenlookingatthenoisedataitwasfoundthatthereareonlytonalpeaksattherotational frequency. Whenlookingattheshroudedcasetherearenotonalpeaksobserved. Finally,itwasfoundthat thevalidationbetweenBPMmodelandexperimentalresultisdifficultduetothelargedifferencebetween datasets. Thisisduetothelackofmeasurementquality. Thenoisemeasurementisnotperformedinan appropriatetunnelresultinginhighbackgroundnoise. However,similartrendswereobservedbetweenthe twodatasetsindicatingthatBPMworksbutrequiresmorevalidation. Thefinaldesignconsistofa12.75cmdiameterrotorwith4blades,whichproducetherequiredpower. The noisewasinvestigatedat30m/satoptimumTSRanditwasconcludedthatthenoisewillneverbeaproblem forresidentialareas. Withtheworkperformed,KitepowerBVwillbeabletodesigntheirownwindturbine basedontheoperatingconditions. v Contents ListofFigures xi 1 Introduction 1 I Background 3 2 ComparisonofPerformance&AeroacousticsModelsforWindTurbines 5 2.1 AirborneWindEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 WindTurbinePerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 BladeElementMomentumTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 LiftingLineTheory(FreeWake) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 VorticesLatticeMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 PanelMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.5 ComputationalFluidDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.6 PerformanceModelSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.7 LowReynoldsNumberAirfoils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 FundamentalsofAeroacousticsforWindTurbine. . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 BasicAcoustics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 TheoryofAeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 WindTurbineAeroacoustics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.4 Semi-empiricalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.5 ComputationalAeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.6 NoisePropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 DutchRegulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 WindTunnelExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 ProblemStatement 19 3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 II Methodology 21 4 AerodynamicPerformanceCalculationsModels 23 4.1 BladeMomentumElementTheory(BEMT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 ActuatorDiskModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 BladeElementMomentumTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 TheBEMTmodelandEngineeringCorrections . . . . . . . . . . . . . . . . . . . . . . 26 4.2 LiftingLineModel(LL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Flowfield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 VortexLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 VortexWake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.4 VortexStrengthCalculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 AirfoilData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 BoundaryLayerTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Xfoil/Rfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.3 VerificationofXfoilandRfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 vii viii CONTENTS 4.4 VerificationofBladeElementMomentumTheoryandLiftingLineMethod. . . . . . . . . . . . 40 4.4.1 VerificationoftheNREL5MW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.2 VerificationoftheSmallWindTurbine. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.3 VerificationoftheMiniWindTurbine . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.4 ConclusionVerification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 WindTurbineNoise 45 5.1 TonalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 AirfoilSelf-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2.1 TurbulentBoundaryLayer-TrailingEdgeNoise(TBL-TE)&S-SNoise . . . . . . . . . . 46 5.2.2 LaminarBoundaryLayer-VortexSheddingNoise(LBL-VS). . . . . . . . . . . . . . . . . 48 5.2.3 TrailingEdgeBluntnessNoise(TEB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.4 TipVortexNoise(TV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 TurbulenceInflowNoise(TIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 TotalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5 Directivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.6.1 VerificationofTBL-TENoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.2 VerificationofTEBNoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.3 VerificationLBL-VSNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 AtmosphericAttenuationModel 55 6.1 SphericalSpreading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 AtmosphericAbsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3 ReflectionandWind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.4 LocationofInterest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 III ResultsandDiscussion 61 7 WindTurbineDesign 63 7.1 Optimiser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2.1 FirstOptimisedDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.2.2 SecondOptimisedDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.3 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.3.1 ManufacturingoftheShroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3.2 ExperimentalTestSet-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.4 InflowAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8 Results 75 8.1 ExperimentalSet-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.1.1 TestSet-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.2.1 MechanicalPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.2.2 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.2.3 TonalNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.3 ValidationofSoftware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3.1 ValidationPerformanceCodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3.2 ValidationAirfoilSelf-noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 FinalRedesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.4.1 NoiseoftheFinalWindTurbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.4.2 Tripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9 KitePower 99 9.1 PowerProfit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Description:
thank Ir. Nando Timmer, for being the expert on wind turbine design during this tent and pointed me to the fact that I need a low drag wind turbine.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.