Power Systems Nagwa F. Ibrahim Sobhy S. Dessouky Design and Implementation of Voltage Source Converters in HVDC Systems Power Systems Electrical power has been the technological foundation of industrial societies for many years. Although thesystems designed to provide and applyelectrical energy havereachedahighdegreeofmaturity,unforeseenproblemsareconstantlyencoun- tered,necessitatingthedesignofmoreefficientandreliablesystemsbasedonnovel technologies.ThebookseriesPowerSystemsisaimedatprovidingdetailed,accu- rate and sound technical information about these new developments in electrical powerengineering.Itincludestopicsonpowergeneration,storageandtransmission as well as electrical machines. The monographs and advanced textbooks in this series address researchers, lecturers, industrial engineers and senior students in electricalengineering. **PowerSystemsisindexedinScopus** Moreinformationaboutthisseriesathttp://www.springer.com/series/4622 (cid:129) Nagwa F. Ibrahim Sobhy S. Dessouky Design and Implementation of Voltage Source Converters in HVDC Systems NagwaF.Ibrahim SobhyS.Dessouky FacultyofTechnologyandEducation FacultyofEngineering SuezUniversity PortSaidUniversity Suez,Egypt PortSaid,Egypt ISSN1612-1287 ISSN1860-4676 (electronic) PowerSystems ISBN978-3-030-51660-4 ISBN978-3-030-51661-1 (eBook) https://doi.org/10.1007/978-3-030-51661-1 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland This book dedicated to: My mother, sister, teachers, and friends for their love, encouragement, and endless support. I give all thanks and gratitude to my dear husband Mohammed Eid and to my little daughter Rodyna, wishing for God to protect them. Nagwa F. Ibrahim Preface Withrecentdevelopmentsinsemiconductorsandcontrolequipment,HighVoltage Direct Current that uses voltage source converters (VSC-HVDC) has attracted the growing interest of researchers. The use of VSC technology and Pulse Width Modulation (PWM) has a number of potential advantages: short circuit current reduction, rapid and independent control of the active and reactive power, etc. With such highly favorable advantages, VSC-HVDC is definitely going to be a largepartoffuturetransmissionanddistributionsystems.HVDCtechnologybased on VSC technology has been an area of growing interest recently because of its suitabilityinformingatransmissionlinkfortransmittingbulkamountofpower. ThisbookdealswiththecontrolofVSC-HVDC.Theobjectiveofthebookisto understandthecontrolstructureoftheVSC-HVDCsystemandestablishthetuning criteriaforthePIcontrollersoftheconvertercontrollers. A model of a VSC-based HVDC using PWM Technology is developed. A mathematicalmodelofthecontrolsystembasedontherelationshipsbetweenvoltage and current is described for the VSC. A control system is developed combining an inner current loop controller and outer dc voltage controller. The vector control strategy is studied within this book andcorresponding dynamic performance under stepchangesarealsoexamined,systemfault,andthedifferentmethodstocalculate the current reference to control AC fault is investigated in MATLAB/Simulink simulation package. The simulation results verify that the model can fulfill bi-directional power transfers and fast response control and that the system has good steady state performance. The controller parameters tuned according to the developedtuningcriteriaisfoundtoprovideacceptablesystemperformances. The presented system is implemented using high-speed digital signal processor (DSP1104). The total harmonic distortion (THD) improved from 17.5% to 3.15%. Experimentalresultsthatdepicttheeffectivenessoftheproposedcontrolmethodfor aninverterarepresented. Suez,Egypt NagwaF.Ibrahim PortSaid,Egypt SobhyS.Dessouky vii Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 BackgroundandMotivation. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemDefinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 BookOutline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 High-VoltageDirectCurrentTransmission. . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 HVDCConverterArrangements. . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 ClassicHVDCTransmission. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 VSC-BasedHVDCSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 ConfigurationofVSC-HVDC. . . . . . . . . . . . . . . . . . . . 9 2.4.2 OperationofVSC-HVDC. . . . . . . . . . . . . . . . . . . . . . . 11 2.4.3 DifferencefromClassicalHVDCandAdvantages. . . . . 12 2.5 ApplicationsofClassicHVDCSystems. . . . . . . . . . . . . . . . . . . 13 3 VSC-HVDCControlSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 ControlStrategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 ThePrincipleofPowerAngleControl. . . . . . . . . . . . . . 16 3.2.2 VectorControlPrinciple. . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3 dqTransformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.4 VectorControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.5 InnerCurrentController. . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.6 TheOuterController. . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.7 DCVoltageControlUsingClassicControl Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.8 ActiveandReactivePowerControllers. . . . . . . . . . . . . 24 3.3 HysteresisCurrentControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 FilterDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ix x Contents 4 VSC-HVDCUnderACandDCFaultConditions. . . . . . . . . . . . . . . 31 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 FaultsontheDCSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Line-to-GroundFault. . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 Pole-to-PoleFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 DCFaultAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 Pole-to-GroundFault. . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.2 Pole-to-PoleFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 FaultsontheACSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.1 TransientGridFaults:theVoltageSags(Dips). . . . . . . . 39 4.5 ControlofGridConvertersUnderGridFaults. . . . . . . . . . . . . . 43 4.5.1 SequenceExtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.2 DecouplingbyCompensation. . . . . . . . . . . . . . . . . . . . 45 4.5.3 DecouplingindqFrame. . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.4 Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.5 InnerControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.6 ControlintheDQReferenceFrame. . . . . . . . . . . . . . . 47 4.5.7 OuterControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.8 CurrentReferenceDistribution. . . . . . . . . . . . . . . . . . . 48 4.6 PNSC(PositiveNegativeSequenceControl). . . . . . . . . . . . . . . 49 4.7 AARC(AverageActive-ReactiveControl). . . . . . . . . . . . . . . . . 50 4.8 BPSC(BalancedPositiveSequenceControl). . . . . . . . . . . . . . . 50 4.9 IARC(InstantaneousActive-ReactiveControl). . . . . . . . . . . . . . 51 5 VSC-HVDCSimulationResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 SimulationEnvironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 ControlPerformance-ControllerTracking Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.2 Steady-StateSimulation. . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 HarmonicAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 HysteresisBandCurrentControllerSimulation. . . . . . . . . . . . . . 59 5.5 SystemResponseUnderUnbalanceFaultCondition. . . . . . . . . . 61 5.5.1 DCLineFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.5.2 Pole-to-PoleFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.5.3 PositivePole-to-GroundFault. . . . . . . . . . . . . . . . . . . . 62 5.5.4 NegativePole-to-GroundFault. . . . . . . . . . . . . . . . . . . 64 5.6 SystemResponseUnderRecoveryofDCFault. . . . . .. . . . . . .. 67 5.6.1 GroundingbyHigh-ImpedanceBranch. . . . . . . . . . . . . 68 5.7 BackupProtectionofConverterbyDesignACBreakers toTripGrid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.8 TransientGridFaults:TheVoltageSags(Dips). . . . . . . . . . . . . 70 5.8.1 SagTypeA:ThreePhaseswithGroundFault. . . . . . . . 70 5.8.2 SagTypeB:Single-Phase-to-GroundFault. . . . . . . . . . 71 5.8.3 SagTypeC:Phase-to-PhaseFault. . . . . . . . . . . . . . . . . 71 Contents xi 5.8.4 SagTypeD:Two-Phase-to-GroundFault. . . . . . . . . . . 72 5.9 TransientGridFaults:Short-CircuitFault. . . . . . . . . . . . . . . . . . 72 5.9.1 SystemResponseUnderSingle-PhaseFault atGrid1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.9.2 SystemResponseUnderSingle-PhaseFault atGrid2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.9.3 SystemResponseUnderThree-PhaseFault atGrid1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.9.4 SystemResponseUnderThree-PhaseFault atGrid2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.10 ControlStrategiesofTransientGridFaults:Short-Circuit Single-Line-to-GroundFault(SL-G). . . . . . . . . . . . . . . . . . . . . 75 5.10.1 BPSC(BalancedPositiveSequenceControl). . . . . . . . . 75 5.10.2 IARC(InstantaneousActive-ReactiveControl). . . . . . . 77 5.10.3 PNSC(PositiveNegativeSequenceControl). . . . . . . . . 77 5.10.4 AARC(AverageActive-ReactiveControl). . . . . . . . . . . 78 5.11 ControlStrategiesofTransientGridFaults:Voltage SagPhase-to-PhaseFault(L-L). . . . . . . . . . . . . . . . . . . . . . . . . 79 5.11.1 BPSC(BalancedPositiveSequenceControl). . . . . . . . . 79 5.11.2 PNSC(PositiveNegativeSequenceControl). . . . . . . . . 79 5.11.3 AARC(AverageActive-ReactiveControl). . . . . . . . . . . 79 5.11.4 IARC(InstantaneousActive-ReactiveControl). . . . . . . 81 6 ExperimentalInvestigationforHVDCSystem. . . . . . . . . . . . . . . . . 83 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 DescriptionoftheExperimentalSetup. . . . . . . . . . . . . . . . . . . . 83 6.2.1 MainPowerCircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2.2 IGBTThree-PhaseVoltageSourceInverter (VSI)Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2.3 SnubberCircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2.4 InverterDrivingCircuit. . . . . . . . . . . . . . . . . . . . . . . . 87 6.2.5 CurrentMeasurement. . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.6 VoltageMeasurement. . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.7 AuxiliaryPowerSupplyCircuits. . . . . . . . . . . . . . . . . . 90 6.2.8 DSP1104ControllerBoard. . . . . . . . . . . . . . . . . . . . . . 92 6.3 ExperimentalResultsandDiscussion. . . . . . . . . . . . . . . . . . . . . 92 7 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 SuggestionsforFutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113