LiU-ITN-TEK-A--17/008--SE Design and implementation of a power distribution network for control equipment for electric vehicle charging Anton Lindström 2017-03-16 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiU-ITN-TEK-A--17/008--SE Design and implementation of a power distribution network for control equipment for electric vehicle charging Examensarbete utfört i Elektroteknik vid Tekniska högskolan vid Linköpings universitet Anton Lindström Handledare Lars Backström Examinator Amir Baranzahi Norrköping 2017-03-16 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/ © Anton Lindström Design and implementation of a power distribution network for control equipment for electric vehicle charging Anton Lindström 2017-03-20 1 Abstract This thesis treats the design and implementation of a power distribution network for a controller PCB for controlling charging of electric vehicles. The controller PCB is powered by mains power, and thus needs both AC to DC conversion and DC to DC conversion in order to operate. The thesis focuses on the design of an isolated flyback topology AC to DC converter, while also describing the design and implementation of the DC to DC converters needed for the controller PCB to operate. The work started with some theoretical study, and then progressed into designing the converters. The AC to DC and the DC to DC converters where designed in parallel. After the design phase was complete the converters where implemented on PCBs for evaluation. The evaluation of the AC to DC converter involved evaluation of several different transformers from different suppliers, as well as evaluation of the circuit design itself. All converters designed proved functional after evaluation. 2 Acknowledgments First I would thank my supervisor Erik at ChargeStorm for his guidance and support, as well as the rest of the people at ChargeStorm who aided me during my thesis work. Secondly I would also like to thank my supervisor Lars and my examiner Amir for their feedback during my work. I would also like to thank my family and my friends for supporting me through my studies. And a special thanks to my partner Sofia for her endless patience and support. Anton Lindström Norrköping 2016 3 TABLE OF CONTENTS 1 Introduction .......................................................................................................................................... 1 1.1 Purpose .................................................................................................................................... 1 1.2 The HCC ................................................................................................................................... 1 1.3 Methodology ........................................................................................................................... 1 1.4 Limitations and delimitations .................................................................................................. 2 2 Background theory .......................................................................................................................... 4 2.1 electric power conversion overview ....................................................................................... 4 2.1.1 Switched conversion ........................................................................................................ 4 2.1.2 Linear Conversion ............................................................................................................ 5 2.2 Switch Mode DCDC Conversion ............................................................................................... 5 2.2.1 Buck converter................................................................................................................. 5 2.2.2 Boost converter ............................................................................................................... 7 2.2.3 Buck-boost converter ...................................................................................................... 8 2.2.4 Continuous and Discontinuous Mode operation ............................................................ 9 2.3 Isolating Switch Mode ACDC Conversion ................................................................................ 9 2.4 Isolated Flyback converter basic operation .......................................................................... 10 2.5 AC/DC Flyback conversion theory ......................................................................................... 11 3 Implementation ............................................................................................................................. 12 3.1 DCDC Implementation ........................................................................................................... 12 3.1.1 +24V to 3.3V Design ...................................................................................................... 12 3.1.2 +24V to +12V Design ..................................................................................................... 14 3.1.3 +12 to -12 Design ........................................................................................................... 15 3.2 ACDC Implementation ........................................................................................................... 17 3.2.1 Requirements ................................................................................................................ 17 3.2.2 IC Selection .................................................................................................................... 17 3.2.3 Transformer Design. ...................................................................................................... 18 3.2.4 Input Capacitor Selection .............................................................................................. 20 3.2.5 Snubber Design .............................................................................................................. 21 3.2.6 Output Stages Design .................................................................................................... 21 3.2.7 Powering the Tinysitch-4 ............................................................................................... 21 3.2.8 Configuring the TinsySwitch-4 ....................................................................................... 22 3.2.9 Feedback circuit ............................................................................................................. 22 3.2.10 EMI considerations ........................................................................................................ 22 3.2.11 Schematic ...................................................................................................................... 23 4 3.2.12 Layout Considerations ................................................................................................... 23 4 Results ........................................................................................................................................... 24 4.1 Results ................................................................................................................................... 24 5 Concluding Discussion and Future Work ....................................................................................... 26 References ............................................................................................................................................. 27 5 Abbreviations ACRONYM MEANING PCB Printed Circuit Board AC Alternating Current DC Direct Current AC/DC Alternating Current to Direct Current DC/DC Direct Current to Direct Current IC Integrated Circuit PDN Power Distribution Network AB AktieBolag HCC Home Charge Controller EV Electronic Vehicle CCU Charge Controller Unit NDA Non Disclosure Agreement SMSP Switched-Mode Power Supply EMI ElectroMagnetic Interference EMC ElectroMagnetic Compliance LDO Low DropOut regulator DCM Discontinuous Conduction Mode MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor MCU Micro Controller Unit GND GrouND RC Resistor Capacitor 6 Figures and Tables: Figure 2.1: Buck converter basic topology 5 Figure 2.2: Buck converter switch-closed current flow 6 Figure 2.3: Buck converter switch-open current flow 6 Figure 2.4: Boost converter basic topology 7 Figure 2.5: Boost converter switch-closed current flow 7 Figure 2.6: Boost converter switch-open current flow 7 Figure 2.7: Buck-boost converter basic topology 8 Figure 2.8: Buck-Boost converter switch-closed current flow 8 Figure 2.9: Buck-Boost converter switch-open current flow 9 Figure 2.10: Isolated Flyback converter basic topology and current flow 10 Figure 2.11: Isolated flyback circuit sections and associated waveforms 11 Figure 3.1: 24V to 3.3V converter with MC33063A 14 Figure 3.2: Schematic of +12V to -12V DC/DC converter with TPS54062 16 Figure 3.3: Isolation interface overview 18 Figure 3.4: Physical layout of the transformer 20 Figure 3.5: The finished schematic of the AC/DC converter 23 Figure 4.1: The +24V to +3.3V DC/DC layout (right) and implemented on a PCB (left) 25 Figure 4.2: The +12V to -12V DC/DC layout (right) and implemented on a PCB (left) 25 Figure 4.3: The AC/DC converter layout (right) and implemented on a PCB (left) 26 Table 3.1: Basic requirements for the 24V to 3.3V converter design 12 Table 3.2: MC33063A relevant performance parameters 13 Table 3.3: Basic requirements for the 24V to 12V converter design 14 Table 3.4. Basic requirements for the +12V to -12V converter design 15 Table 3.5: TPS54062 relevant performance parameters 15 Table 3.6: Requirements for the AC/DC converter 17 Table 3.7: Power requirements of the transformer 18 Table 3.8: Isolation specifications for the transformer 18 Table 3.9: Physical properties and requirements of the transformer 19 7
Description: