ebook img

Descriptive Topology in Selected Topics of Functional Analysis PDF

493 Pages·2011·2.394 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Descriptive Topology in Selected Topics of Functional Analysis

Developments in Mathematics VOLUME 24 SeriesEditors: KrishnaswamiAlladi,UniversityofFlorida HershelM.Farkas, HebrewUniversityofJerusalem RobertGuralnick,UniversityofSouthern California Forfurthervolumes: www.springer.com/series/5834 Jerzy Ka˛kol (cid:2) Wiesław Kubis´ (cid:2) Manuel López-Pellicer Descriptive Topology in Selected Topics of Functional Analysis JerzyKa˛kol WiesławKubis´ FacultyofMathematicsandInformatics InstituteofMathematics A.MickiewiczUniversity JanKochanowskiUniversity 61-614Poznan 25-406Kielce Poland Poland [email protected] and InstituteofMathematics ManuelLópez-Pellicer AcademyofSciencesoftheCzechRepublic IUMPA 11567Praha1 UniversitatPoltècnicadeValència CzechRepublic 46022Valencia [email protected] Spain and RoyalAcademyofSciences 28004Madrid Spain [email protected] ISSN1389-2177 ISBN978-1-4614-0528-3 e-ISBN978-1-4614-0529-0 DOI10.1007/978-1-4614-0529-0 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2011936698 MathematicsSubjectClassification(2010): 46-02,54-02 ©SpringerScience+BusinessMedia,LLC2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To ourFriend andTeacher Prof. Dr.ManuelValdivia Preface We invoke (descriptive) topology recently applied to (functional) analysis of infinite-dimensional topological vector spaces, including Fréchet spaces, (LF)- spaces and their duals, Banach spaces C(X) over compact spaces X, and spaces C (X), C (X) of continuous real-valued functions on a completely regular Haus- p c dorffspaceX endowedwithpointwiseandcompact–opentopologies,respectively. The(LF)-spacesanddualsparticularlyappearinmanyfieldsoffunctionalanalysis anditsapplications:distributiontheory,differentialequationsandcomplexanalysis, tonameafew. Ourmaterial,muchofitinbookformforthefirsttime,carriesforwardtherich legacy of Köthe’s Topologische lineare Räume (1960), Jarchow’s Locally Convex Spaces(1981),Valdivia’sTopicsinLocallyConvexSpaces(1982),andPérezCar- rerasandBonet’sBarrelledLocallyConvexSpaces(1987).Weassumetheir(stan- dardEnglish)terminology.Atopologicalvectorspace(tvs)mustbeHausdorffand havearealorcomplexscalarfield.A locallyconvexspace (lcs)is atvsthatislo- callyconvex.Engelking’sGeneralTopology(1989)servesasadefaultreferencefor generaltopology. TheauthorswishtothankProfessorB.Cascales,ProfessorM.Fabian,Professor V.Montesinos,andProfessorS.Saxonfortheirvaluablecommentsandsuggestions, whichmadethismaterialmuchmorereadable. TheresearchofJ.Ka˛kolwaspartiallysupportedbytheMinistryofScienceand HigherEducation,Poland,undergrantno.NN201274033. W.Kubis´ wassupportedinpartbygrantIAA100190901,bytheInstitutional ResearchPlanoftheAcademyofSciencesoftheCzechRepublicundergrantno. AVOZ 101 905 03, and by an internal research grant from Jan Kochanowski Uni- versityinKielce,Poland. The research of J. Ka˛kol and M. López-Pellicer was partially supported by the SpanishMinistryofScienceandInnovation,underprojectno.MTM2008-01502. Poznan,Poland JerzyKa˛kol Kielce,Poland WiesławKubis´ Valencia,Spain ManuelLópez-Pellicer vii Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Generalcommentsandhistoricalfacts . . . . . . . . . . . . . . . 7 2 ElementaryFactsaboutBaireandBaire-TypeSpaces . . . . . . . . 13 2.1 BairespacesandPolishspaces . . . . . . . . . . . . . . . . . . . 13 2.2 AcharacterizationofBairetopologicalvectorspaces. . . . . . . . 18 2.3 AriasdeReyna–Valdivia–Saxontheorem . . . . . . . . . . . . . . 20 2.4 LocallyconvexspaceswithsomeBaire-typeconditions . . . . . . 24 2.5 StronglyrealcompactspacesXandspacesC (X) . . . . . . . . . 36 c 2.6 Pseudocompactspaces,WarnerboundednessandspacesC (X) . . 46 c 2.7 SequentialconditionsforlocallyconvexBaire-typespaces . . . . . 56 3 K-analyticandQuasi-SuslinSpaces. . . . . . . . . . . . . . . . . . . 63 3.1 Elementaryfacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 ResolutionsandK-analyticity . . . . . . . . . . . . . . . . . . . . 71 3.3 Quasi-(LB)-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4 Suslinschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 ApplicationsofSuslinschemestoseparablemetrizablespaces. . . 93 3.6 Calbrix–Hurewicztheorem . . . . . . . . . . . . . . . . . . . . . 101 4 Web-CompactSpacesandAngelicTheorems . . . . . . . . . . . . . 109 4.1 Angeliclemmaandangelicity . . . . . . . . . . . . . . . . . . . . 109 4.2 Orihuela’sangelictheorem . . . . . . . . . . . . . . . . . . . . . 111 4.3 Web-compactspaces . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4 Subspacesofweb-compactspaces. . . . . . . . . . . . . . . . . . 116 4.5 AngelicdualsofspacesC(X) . . . . . . . . . . . . . . . . . . . . 118 4.6 AboutcompactnessviadistancestofunctionspacesC(K) . . . . . 120 5 StronglyWeb-CompactSpacesandaClosedGraphTheorem . . . . 137 5.1 Stronglyweb-compactspaces . . . . . . . . . . . . . . . . . . . . 137 5.2 Productsofstronglyweb-compactspaces . . . . . . . . . . . . . . 138 5.3 Aclosedgraphtheoremforstronglyweb-compactspaces . . . . . 140 ix x Contents 6 WeaklyAnalyticSpaces . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1 Afewfactsaboutanalyticspaces . . . . . . . . . . . . . . . . . . 143 6.2 Christensen’stheorem . . . . . . . . . . . . . . . . . . . . . . . . 149 6.3 Subspacesofanalyticspaces . . . . . . . . . . . . . . . . . . . . 155 6.4 Trans-separabletopologicalspaces . . . . . . . . . . . . . . . . . 157 6.5 Weaklyanalyticspacesneednotbeanalytic . . . . . . . . . . . . 164 6.6 Moreaboutanalyticlocallyconvexspaces . . . . . . . . . . . . . 167 6.7 Weaklycompactdensitycondition . . . . . . . . . . . . . . . . . 168 6.8 Moreexamplesofnonseparableweaklyanalytictvs . . . . . . . . 174 7 K-analyticBaireSpaces . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.1 Bairetvswithaboundedresolution . . . . . . . . . . . . . . . . . 183 7.2 Continuousmapsonspaceswithresolutions . . . . . . . . . . . . 187 8 AThree-SpacePropertyforAnalyticSpaces . . . . . . . . . . . . . . 193 8.1 AnexampleofCorson . . . . . . . . . . . . . . . . . . . . . . . . 193 8.2 Apositiveresultandacounterexample . . . . . . . . . . . . . . . 196 9 K-analyticandAnalyticSpacesC (X) . . . . . . . . . . . . . . . . . 201 p 9.1 AtheoremofTalagrandforspacesC (X) . . . . . . . . . . . . . 201 p 9.2 TheoremsofChristensenandCalbrixforC (X) . . . . . . . . . . 204 p 9.3 BoundedresolutionsforC (X) . . . . . . . . . . . . . . . . . . . 215 p 9.4 SomeexamplesofK-analyticspacesC (X)andC (X,E) . . . . 230 p p 9.5 K-analyticspacesC (X)overalocallycompactgroupX . . . . . 231 p ∧ 9.6 K-analyticgroupX ofhomomorphisms . . . . . . . . . . . . . . 234 p 10 PrecompactSetsin(LM)-SpacesandDualMetricSpaces . . . . . . 239 10.1 Thecaseof(LM)-spaces:elementaryapproach . . . . . . . . . . 239 10.2 Thecaseofdualmetricspaces:elementaryapproach . . . . . . . . 241 11 MetrizabilityofCompactSetsintheClassG . . . . . . . . . . . . . 243 11.1 TheclassG:examples . . . . . . . . . . . . . . . . . . . . . . . . 243 11.2 Cascales–Orihuelatheoremandapplications . . . . . . . . . . . . 245 12 WeaklyRealcompactLocallyConvexSpaces. . . . . . . . . . . . . . 251 12.1 Tightnessandquasi-Suslinweakduals . . . . . . . . . . . . . . . 251 12.2 AKaplansky-typetheoremabouttightness . . . . . . . . . . . . . 254 12.3 K-analyticspacesintheclassG . . . . . . . . . . . . . . . . . . . 258 12.4 EveryWCGFréchetspaceisweaklyK-analytic . . . . . . . . . . 260 12.5 Amir–Lindenstrausstheorem . . . . . . . . . . . . . . . . . . . . 266 12.6 AnexampleofPol . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.7 MoreaboutBanachspacesC(X)overcompactscatteredX . . . . 276 13 Corson’sProperty(C)andTightness . . . . . . . . . . . . . . . . . . 279 13.1 Property(C)andweaklyLindelöfBanachspaces . . . . . . . . . 279 13.2 Theproperty(C)forBanachspacesC(X) . . . . . . . . . . . . . 284 Contents xi 14 Fréchet–UrysohnSpacesandGroups . . . . . . . . . . . . . . . . . . 289 14.1 Fréchet–Urysohntopologicalspaces . . . . . . . . . . . . . . . . 289 14.2 AfewfactsaboutFréchet–Urysohntopologicalgroups . . . . . . 291 14.3 SequentiallycompleteFréchet–UrysohnspacesareBaire . . . . . 296 14.4 Three-spacepropertyforFréchet–Urysohnspaces . . . . . . . . 299 14.5 Topologicalvectorspaceswithboundedtightness . . . . . . . . . 302 15 SequentialPropertiesintheClassG . . . . . . . . . . . . . . . . . . 305 15.1 Fréchet–UrysohnspacesaremetrizableintheclassG . . . . . . 305 15.2 Sequential(LM)-spacesandthedualmetricspaces. . . . . . . . 311 − 15.3 (LF)-spaceswiththepropertyC . . . . . . . . . . . . . . . . 320 3 16 TightnessandDistinguishedFréchetSpaces . . . . . . . . . . . . . . 327 16.1 Acharacterizationofdistinguishedspaces . . . . . . . . . . . . . 327 16.2 G-basesandtightness . . . . . . . . . . . . . . . . . . . . . . . 334 16.3 G-bases,bounding,dominatingcardinals,andtightness . . . . . 338 16.4 MoreabouttheWulbert–MorrisspaceC (ω ) . . . . . . . . . . 349 c 1 17 BanachSpaceswithManyProjections . . . . . . . . . . . . . . . . . 355 17.1 Preliminaries,model-theoretictools . . . . . . . . . . . . . . . . 355 17.2 Projectionsfromelementarysubmodels . . . . . . . . . . . . . . 361 17.3 Lindelöfpropertyofweaktopologies . . . . . . . . . . . . . . . 364 17.4 Separablecomplementationproperty . . . . . . . . . . . . . . . 365 17.5 Projectionalskeletons . . . . . . . . . . . . . . . . . . . . . . . 369 17.6 Normingsubspacesinducedbyaprojectionalskeleton . . . . . . 375 17.7 Sigma-products . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 17.8 Markushevichbases,PlichkospacesandPlichkopairs . . . . . . 383 17.9 PreservationofPlichkospaces . . . . . . . . . . . . . . . . . . . 388 18 SpacesofContinuousFunctionsoverCompactLines . . . . . . . . . 395 18.1 Generalfacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 18.2 Nakhmanson’stheorem . . . . . . . . . . . . . . . . . . . . . . 398 18.3 Separablecomplementation . . . . . . . . . . . . . . . . . . . . 399 19 CompactSpacesGeneratedbyRetractions . . . . . . . . . . . . . . 405 19.1 Retractiveinversesystems . . . . . . . . . . . . . . . . . . . . . 405 19.2 Monolithicsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 19.3 ClassesR andRC . . . . . . . . . . . . . . . . . . . . . . . . . 411 19.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 19.5 Someexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 19.6 Thefirstcohomologyfunctor . . . . . . . . . . . . . . . . . . . 418 19.7 Compactlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 19.8 ValdiviaandCorsoncompactspaces . . . . . . . . . . . . . . . . 425 19.9 Preservationtheorem . . . . . . . . . . . . . . . . . . . . . . . . 432 19.10 Retractionalskeletons . . . . . . . . . . . . . . . . . . . . . . . 434 19.11 PrimarilyLindelöfspaces . . . . . . . . . . . . . . . . . . . . . 438 19.12 CorsoncompactspacesandWLDspaces . . . . . . . . . . . . . 440 19.13 Adichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 xii Contents 19.14 Alexandrovduplications . . . . . . . . . . . . . . . . . . . . . . 446 19.15 Valdiviacompactgroups . . . . . . . . . . . . . . . . . . . . . . 448 19.16 CompactlinesinclassR . . . . . . . . . . . . . . . . . . . . . . 451 19.17 MoreonEberleincompactspaces . . . . . . . . . . . . . . . . . 456 20 ComplementablyUniversalBanachSpaces . . . . . . . . . . . . . . 467 20.1 Amalgamationlemma . . . . . . . . . . . . . . . . . . . . . . . 467 20.2 Embedding-projectionpairs . . . . . . . . . . . . . . . . . . . . 469 20.3 AcomplementablyuniversalBanachspace . . . . . . . . . . . . 471 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Chapter 1 Overview Letusbrieflydescribetheorganizationofthebook. Chapter2,essentialtothesequel,containsclassicalresultsaboutBaire-typecon- ditions(Baire-like,b-Baire-like,CS-barrelled,s-barrelled)ontvs.Weincludeappli- cationstoclosedgraphtheoremsandC(X)spaces.Wealsoprovidethefirstproofin bookformofaremarkableresultofSaxon[355](extendingearlierresultsofArias deReynaandValdivia)thatstatesthat,underMartin’saxiom,everylcscontaining a dense hyperplane contains a dense non-Baire hyperplane. Ours, then, is the first booktosolvethefirstproblemformallyposedinPérezCarrerasandBonet’sexcel- lentmonograph.Chapter2alsocontainsanalyticcharacterizationsofcertaincom- pletely regular Hausdorff spaces X. For example, we show that X is pseudocom- pact,isWarnerbounded,orC (X)isa(df)-spaceifandonlyifforeachsequence c (μ ) in the dual C (X)(cid:2) there exists a sequence (t ) ⊂(0,1] such that (t μ ) n n c n n n n n isweaklybounded,stronglybounded,orequicontinuous,respectively([231,232]). These characterizations help us produce a (df)-space C (X) that is not a (DF)- c space[232],solvingabasicandlong-standingopenquestion.Thethirdcharacteri- zationisjoinedbyninemorethatsupplytenfoldanimpliedJarchowrequest.These forgeastronglinkwehappilyclaimbetweenhisbookandours. Chapter 3 deals with the K-analyticity of a topological space E and the con- cept of a(cid:2)resolution generated on E (i.e., a family of sets {Kα : α ∈ NN} such that E = K and K ⊂K if α ≤β). Compact resolutions (i.e., resolutions α α α β {K :α∈NN} whose members are compact sets) naturally appear in many situa- α tions in topology and functional analysis. Any K-analytic space admits a compact resolution[388],andformanytopologicalspacesXtheexistenceofsucharesolu- tionisenoughforXtobeK-analytic;(see[80],[82]).Manyoftheideasinthebook arerelatedtotheconceptofcompactresolutionandarealreadyinorhavebeenin- spiredbypapers[388],[80],[82].Itisaneasyandelementaryexercisetoobserve thatanyseparablemetricandcompletespaceE admitsacompactresolution,even swallowingcompactsets.InChapter3,wegathersomeresults,mostlyduetoVal- divia [421], about lcs (called quasi-(LB)-spaces) admitting resolutions consisting ofBanachdiscsandtheirrelationswiththeclosedgraphtheorems. J.Ka˛koletal.,DescriptiveTopologyinSelectedTopicsofFunctionalAnalysis, 1 DevelopmentsinMathematics24, DOI10.1007/978-1-4614-0529-0_1,©SpringerScience+BusinessMedia,LLC2011

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.