ebook img

Derivation and Computation: Taking the Curry-Howard Correspondence Seriously PDF

412 Pages·2000·12.447 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Derivation and Computation: Taking the Curry-Howard Correspondence Seriously

ISBN 0-521-77173-0 I I 9 780521 771733 . Derivation and Computation Cambridge Tracts in Theoretical Computer Science Editorial Board S. Abramsky, Department of Computing Science, Edinburgh University P. H. Aczel, Department of Computer Science, University of Manchester J. W. de Bakker, Centrum voor Wiskunde en Informatica, Amsterdam Y. Gurevich, Department of Electrical Engineering and Computer Science, University of Michigan J. V. Thcker, Department of Mathematics and Computer Science, University College of Swansea Titles in the series 1. G. Chaitin Algorithmic Information Theory 2. L. G. Paulson Logic and Computation 3. M. Spivey Understanding Z 5. A. Ramsey Formal Methods in Artificial Intelligence 6. S. Vickers Topology via Logic 7. J.-Y. Girard, Y. Lafont & P. Taylor Proofs and Types 8. J. Clifford Formal Semantics & Pragmatics for Natural Language Processing 9. M. Winslett Updating Logical Databases 10. K. McEvoy & J. V. Thcker (eds) Theoretical Foundations of VLSI Design 11. T. H. Tse A Unifying Framework for Structured Analysis and Design Models 12. G. Brewka Nonmonotonic Reasoning 14. S. G. Hoggar Mathematics for Computer Graphics 15. S. Dasgupta Design Theory and Computer Science 17. J. C. M. Baeten (ed) Applications of Process Algebra 18. J. C. M. Baeten & W. P. Weijland Process Algebra 19. M. Manzano Extensions of First Order Logic 21. D. A. Wolfram The Clausal Theory of Types 22. V. Stoltenberg-Hansen, I. Lindstrom & E. Griffor Mathematical Theory of Domains 23. E.-R. Olderog Nets, Terms and Formulas 26. P. D. Mosses Action Semantics 27. W. H. Hesselink Programs, Recursion and Unbounded Choice 28. P. Padawitz Deductive and Declarative Programming 29. P. Gardenfors (ed) Belief Revision 30. M. Anthony & N. Biggs Computational Learning Theory 31. T. F. Melham Higher Order Logic and Hardware Verification 32. R. L. Carpenter The Logic of Typed Feature Structures 33. E. G. Manes Predicate Transformer Semantics 34. F. Nielson & H. R. Nielson Two Level Functional Languages 35. L. Feijs & H. Jonkers Formal Specification and Design 36. S. Mauw & G. J. Veltink (eds) Algebraic Specification of Communication Protocols 37. V. Stavridou Formal Methods in Circuit Design 38. N. Shankar Metamathematics, Machines and Godel's Proof 39. J. B. Paris The Uncertain Reasoner's Companion 40. J. Dessel & J. Esparza F'ree Choice Petri Nets 41. J.-J. Ch. Meyer & W. van der Hoek Epistemic Logic for AI and Computer Science 42. J. R. Hindley Basic Simple Type Theory 43. A. Troelstra & H. Schwichtenberg Basic Proof Theory 44. J. Barwise & J. Seligman Information Flow 45. A. Asperti & S. Guerrini The Optimal Implementatiq",of Functional Programming Languages 46. R. M. Amadio & P.-L. Curien Domains and Lambda'P~lP!~i 47. W.-P. de Roever & K. Engelhardt Data Refinement 48. H. Kleine Biining & T. Lettman Propositional Logic. . , 49. L. Novak & A. Gibbons Hybrid Graph Theory and Network· Analysis Derivation and Computation Taking the Curry-Howard correspondence seriously Harold Simmons University of Manchester CAMBRIDGE UNIVERSITY PRESS 111111111111111111111111111111111111111111111111 <: n<:t.? 0111 ~ PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http:/ Jwww.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http:/ jwww.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcon 13, 28014 Madrid, Spain © Cambridge University Press 2000 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2000 Printed in the United Kingdom at the University Press, Cambridge Typeset by the author in Computer Modern 10/13pt, in 1l'"IEX2e [EPC) A catalogue record of this book is available from the British Library Library of Congress Cataloguing in Publication data Simmons, Harold. Derivation and computation: taking the Curry~Howard correspondence seriously: derivation systems, substitution algorithms, computation mechanisms / Harold Simmons. p. cm. Includes bibliographical references and index. ISBN 0 521 77173 0 (hb) 1. Proof theory. 2. Lambda calculus. 3. Type theory. I. Title. QA9.54 S55 2000 511.3 21-dc21 99-044953 ISBN 0 521 77173 0 hardback :.('.' ::* . J 1~.-. CONTENTS INTRODUCTION xi PREVIEW XV I DEVELOPMENT AND EXERCISES 1 1 DERIVATION SYSTEMS 3 1.1 Introduction ... 3 Exercises. 8 1.2 Generalities' . . . 8 Exercises. 14 1.3 The systems H and N . 14 Exercises .... 18 1.4 Some algorithms on derivations 19 Exercises ..... 24 2 COMPUTATION MECHANISMS 27 2.1 Introduction . . . . 27 Exercises .. 28 2.2 Combinator terms . 29 Exercises .. 31 2.3 Combinator reduction 31 Exercises. 35 2.4 .A-terms 37 0 •••• Exercises. 40 2.5 .A-reduction ... 40 Exercises. 43 2.6 Intertranslatability 43 Exercises .. 45 2.7 Confluence and normalization 45 Exercises ........ 47 3 THE TYPED COMBINATOR CALCULUS 48 3.1 Introduction ... 48 Exercises .... 50 0 •• 0 ••• 1295895 Vl Contents 302 Derivation 0 0 0 0 0 0 50 Exercises 0 0 0 0 52 303 Annotation and deletion 53 Exercises 0 57 3.4 Computation 57 Exercises 0 60 305 Subject reduction 60 Exercises 0 65 4 THE TYPED A-CALCULUS 67 401 Introduction 0 0 67 Exercises 0 68 402 Derivation 0 0 0 0 68 Exercises 0 70 403 Annotation and deletion 71 Exercises 0 75 4.4 Substitution 0 0 0 75 Exercises 0 77 405 Computation 0 0 78 Exercises 0 80 406 Subject reduction 80 Exercises 0 81 5 SUBSTITUTION ALGORITHMS 82 501 Introduction 0 0 0 0 82 Exercises 0 0 0 85 502 Formal replacements 86 Exercises 0 0 0 89 503 The generic algorithm 89 Exercises 0 0 0 91 5.4 The mechanistic algorithm 92 Exercises 0 0 0 0 0 0 95 505 Some properties of substitution 95 Exercises 0 0 0 0 0 0 0 0 0 98 6 APPLIED A-CALCULI 100 601 Introduction 0 0 100 Exercises 0 102 602 Derivation 0 0 0 0 102 Exercises 0 105 603 Type synthesis 106 Exercises 0 111 6.4 Mutation 0 111 ••• 0 Exercises 0 120 605 Computation 122 Exercises 0 125 Contents vii 6.6 Type inhabitation . 125 Exercises. 128 6.7 Subject reduction 129 Exercises. 135 7 MULTI-RECURSIVE ARITHMETIC 137 7.1 Introduction ..... 137 Exercises ... 140 7.2 The specifics of )..G . 140 Exercises ... 143 7.3 Forms of recursion and induction 144 Exercises .... 148 7.4 Small jump operators . . . . . . 150 Exercises ......... 158 7.5 The multi-recursive hierarchies . 159 Exercises .. 163 7.6 The extent of )..G . 164 Exercises. 165 7.7 Naming in AG 166 Exercises. 169 8 ORDINALS AND ORDINAL NOTATIONS 170 8.1 Introduction .... 170 Exercises .. 170 8.2 Ordinal arithmetic 170 Exercises .. 174 8.3 Fundamental sequences . 174 Exercises ..... 177 8.4 Some particular ordinals 177 Exercises. 183 8.5 Ordinal notations 183 Exercises. 188 9 HIGHER ORDER RECURSION 189 9.1 Introduction ... 189 Exercises. 192 9.2 The long iterator 193 Exercises. 196 9.3 Limit creation and lifting . 196 Exercises ...... 198 9.4 Parameterized ordinal iterators 198 Exercises ........ 201 9.5 How to name ordinal iterates 202 Exercises. 205 9.6 The GODS ... 206 Exercises. 211 viii Contents II SOLUTIONS 213 A DERIVATION SYSTEMS 215 A.1 Introduction . . . . 215 A.2 Generalities .... 216 A.3 The systems H and N . 219 A.4 Some algorithms on derivations 225 B COMPUTATION MECHANISMS 234 B.1 Introduction . . . . . . 234 B.2 Combinator terms . . . 237 B.3 Combinator reduction 237 B.4 .A-terms ...... 242 B.5 .A-reduction ...... 244 B.6 Intertranslatability .. 246 B.7 Confluence and normalization 247 c THE TYPED COMBINATOR CALCULUS 249 C.l Introduction . . . . . . . 249 C.2 Derivation . . . . . . . . 249 C.3 Annotation and deletion 252 C.4 Computation .. 256 C.5 Subject reduction .. 258 D THE TYPED A-CALCULUS 264 D.1 Introduction . . . . . 264 D.2 Derivation . . . . . . 264 D.3 Annotation and deletion 267 D.4 Substitution . . . 269 D.5 Computation .. 271 D.6 Subject reduction 275 E SUBSTITUTION ALGORITHMS 279 E.1 Introduction . . . . . . 279 E.2 Formal replacements .. 281 E.3 The generic algorithm 281 E.4 The mechanistic algorithm 283 E.5 Some properties of substitution 287 F APPLIED A-CALCULI 290 F.1 Introduction . . 290 F.2 Derivation . . . 290 F.3 Type synthesis 292 FA Mutation .... 297 F.5 Computation 306 F.6 Type inhabitation . 308 F.7 Subject reduction . 314

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.