Handbook of Experimental Pharmacology Volume 188 Editor-in-Chief F.Hofmann,München EditorialBoard J.Beavo,Seattle,WA A.Busch,Berlin D.Ganten,Berlin J.-A.Karlsson,Singapore M.Michel,Amsterdam C.P.Page,London W.Rosenthal,Berlin Giovanna Lombardi • Yanira Riffo-Vasquez Editors Dendritic Cells Contributors L.Adorini,W.vandenAncker,G.Belz,A.Benlahrech,F.Belardelli,M.Buckland, A.E.Castell-Rodriguez, G.D’Agostino, S.S.Diebold, M.Ferrantini, R. Fischer, K.A.Gelderman, H. Hammad, W. Han, M. Herrera-Enriquez, I. Houtenbos, D. Kahler, A.KleinJan, C.vanKooten, B.N. Lambrecht, A. Lanzavecchia, C.Lapenta,G.Lombardi,A.A.vandeLoosdrecht,A.Martín-Fontecha,F.Masson, A.L.Mellor,A.Mount,G.J.Ossenkoppele,T.Papagatsias,S.Patterson,G.Penna, T.R.D.J. Radstake, M.D. Ramirez-Gonzalez, F. Sallusto, S.M.Santini, L.Santodonato,A.S.Stax,T.Taner,A.W.Thomson,H.R.Turnquist,R.E.M.Toes, Y.R. Vasquez, L.G. Villanueva-Rodriguez, M.H. Wenink, T.M. Westers, A.M.Woltman 123 Editors GiovannaLombardi YaniraRiffoVasquez ProfessorofHumanTransplantImmunology ResearchFellow MRCCentreinTransplantation TheSacklerInstituteofPulmonary Dep.ofNephrologyandTransplantation, Pharmacology DIIID PharmaceuticalScienceDivision King’sCollegeLondon 5thFloorHodgkinBuilding SchoolofMedicine School of Biomedical and Health Sciences Guy’sHospital King’sCollegeLondon London,UK LondonSE11UL [email protected] UnitedKingdom [email protected] ISBN978-3-540-71028-8 e-ISBN978-3-540-71029-5 HandbookofExperimentalPharmacologyISSN0171-2004 LibraryofCongressControlNumber: 2008932233 (cid:2)c Springer-VerlagBerlinHeidelberg 2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Product liability: The publisher cannot guarantee the accuracy of any information about dosage and applicationcontainedinthisbook.Ineveryindividualcasetheusermustchecksuchinformationby consultingtherelevantliterature. CoverDesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper springer.com Preface The understanding of the role of dendritic cells (DCs) in immune responses has comealongwaysinceSteinmannandcolleaguesdescribedthesecellsin1972.Ex- tensive research during the intervening period has provided a good understanding ofthecomplexityoftheDCsystemanditspivotalroleinimmunity.Itisalsonow clearerhowdifferentsubsetsofDCsinteractandregulateeachotherandhowDC populationsaffectthefunctionofothercellsoftheimmunesystem.Theimproved understandingoftheirroleinimmuneresponsehasledtotheideathatmodulation ofDCfunctionsby,forexample,pharmacologicalagentscouldbeusedasapoten- tialtherapeutic approach in some pathological conditions. The actual applicability andtherapeuticpotentialofalltheseapproachesisyettobefullydemonstratedbut nonetheless,animalmodelsofhumandiseasesareprovingtobeveryhelpfulinthe evaluationofmanipulatedDCsasanewtreatmentindiseaseslikecancer,autoim- munityorasthma. DCsareintegraltotheinitiationandregulationofimmuneresponse(Banchereau et al. 2000). The outcome of antigen presentation by DCs is determined by their maturation status, which can be induced by their interaction with danger signals. Torecogniseawidearrayofpathogen-associatedmolecularpatterns(PAMP),DCs express a number of pattern recognition receptors (PRR) such as Toll-like recep- tors(TLRs)andC-typelectinreceptors(CLR)thatrecognisestructuralcomponents of pathogens and discriminate between self and non-self molecules. The distribu- tion of PRRs by DCs is variable and differs between DC subsets, as reviewed in this issue of Handbook of Experimental Pharmacology. Following an encounter with pathogens, DCs stop sampling the microenviroment and became dedicated antigen presenting cells. These mature DCs migrate to the secondary lymphoid organs and present antigen to lymphocytes. The trafficking of DCs, in particu- lar from skin and blood, has been reviewed in this volume. Mature DCs have a potent capacity to stimulate T cells, while immature DCs fail to fully activate T cellsandcaninduceTcelltolerancethroughanergy,deletionorinductionofTregs (Bonifaz et al. 2002; Hawiger et al. 2001). More specifically, different DC sub- sets appear to have distinct effects on T cell behaviour. DCs are in fact a very heterogenous population of cells. In mice there are at least six major subtypes of v vi Preface DCs (reviewed by Pulendran et al. 2008). In the spleen and lymph nodes, DCs are characterised by the expression of CD11c and MHC class II. In the spleen there are three subsets: (1) CD11chighCD8α+CD11b−DEC205+ (CD8α+ lym- phoid DCs); (2) CD11chighCD8α−CD11b+DEC205− (CD8α− myeloid DCs); (3) CD11cintCD8α+/−CD11b+B220+Gr-1+− (pDCs). However there is another way in which splenic DCs have been classified, based on the expression of CD4 and CD8 surface markers (Dudziak et al. 2007; Masson et al. 2008). Using these two markers, three populations of DCs can be discerned in the spleen: CD8α+CD4− (CD8αDCs)CD8α−CD4+,andCD8α−CD4− (thelasttwodefinedasnonCD8α DCs).Furthermore,theCD8α+CD4− DCsexpresstheCD205molecule,whilethe CD8α−CD4+ DCs express a high level of the C-type lectin inhibitory receptor-2 (DCIR2) which can be targeted by the antibody 33D1 (Dudziak et al. 2007). The percentages vary slightly, depending on the mouse strain. More recently, it has been shown that CD4−CD8α+ and CD4+CD8α− DC stimulate CD8+ and CD4+ T cells respectively (Dudziak et al. 2007). These properties are related to differences in the MHC class I and MHC class II antigen presentation path- ways (Dudziak et al. 2007). In the lymph nodes there are two additional subsets CD11chighCD8αdullDEC205highLangerin+ (Langherans cell-derived DCs-LCDCs) andCD11chighCD8α−CD11b+DEC205+ (DermalDCs).TheLCDCsandtheDer- mal DCs in the lymph nodes are derived from skin (reviewed in this volume). All these subsets of DCs have different locations in the secondary lymphoid organs. TheCD11chighCD8α+ DCsarelocalisedintheTcellareawhiletheCD8α− DCs are localised in the marginal zones of the spleen and the subcapsular sinuses of thelymphnodes.TheCD8α+ DCsubsetsecreteIL-12whiletheCD8α− produce mostly IL-10. While in vivo data suggests that CD8α+ DC stimulation of T cells generallypromotesTh1andCD8α− DCsmainlypromoteaTh2response,invitro stimulation has shown that this division can be overcome (Maldonado-Lopez and Moser2001).Inthisissuetheroleinparticularoftheanti-viralimmuneresponsesof differentDCssubsetswillbediscussed.ApartfromthethreesubsetsofDCspresent intheskin(LCDCs,DermalDCsandpDCs)thatmigratetothelymphnodesfollow- ingactivation,fourdifferentsubsetsofDCshavebeendescribedinthreemainloca- tionsintheintestine(Peyer’spatches,laminapropria,andmesentericLNs).These four subsets are similar to the subsets identified in the spleen with an additional marker,CCR6,tosubdividetheCD11cbrightCD8α−CD11b+DCs.Veryrecentlyan alternative classification of DC subsets has been used, based on the expression of chemokinereceptorCX3CR1andCD103,furtherconfirmingtheunresolvedissue ofDCsubsetsinthemouse. PlasmacytoidDCsareaspecialisedDCsubsetofdistinctlineagefromCD11chigh DCs, and they produce type I IFNs in response to microbial infections. Immature pDCsarepoorstimulatorsofna¨ıveTcellactivation,aconsequenceoftheirlowex- pressionlevelsofco-stimulatorymoleculesandintermediateMHCclassIIexpres- sion (Martin et al. 2002), (Asselin-Paturel et al. 2001). As applies to conventional CD11chigh DCs,thematurationstatusofthepDCdeterminesitsstimulatorypoten- tial,anduponmaturation,pDCsacquiretheabilitytoprimeTcellresponses,albeit less than CD11chigh DCs (Salio et al. 2004). Although pDCs have a key role in a Preface vii number of immune-mediated diseases such as psoriasis and immunity to tumours and pathogens, pDCs have also the ability to down-regulate the immune response (Abeetal.2005;Mosemanetal.2004;Ochandoetal.2006).AspectsofpDCmi- grationandfunctionarediscussedinthisbook. In humans there are two major DC subtypes described, classically defined as MyeloidandLymphoid.MyeloidDCsaredividedintosteadystateDCs,including LangheranscellsandInterstitialDCsthatcontinuallysamplethemicroenviroment, and inflammatory DCs that are generated in response to inflammation (Shortman and Naik 2007). The other prominent DC subtype in the human is the type-I IFN producingpDCs,thatrespondtoviralinfection(14).DCscanbegeneratedinvitro fromCD14+CD11c+monocytewithGranulocyte/MacrophageColony-Stimulating Factor(GM-CSF)andIL-4(SallustoandLanzavecchia 1994).Alternativelyithas been shown that the addition of type-I IFN or TGF-β and GM-CSF can result in DCs deficient in the adhesion molecule DC-SIGN that resembles Langherans cells (Relloso et al. 2002). Human Myeloid DCs can also be directly obtained ex vivofromthebloodbyusinganantibodythatrecognisestheBloodDendriticCell Antigen-2 (BDCA-2+) marker. Plasmacytoid DCs can also be generated ex vivo fromBDCA-4+precursorandculturedinthepresenceofIL-3(Itoetal.2007). Altogether the overview of the DC subsets presented here further highlights the complexity of the DC system and raises important questions about the use of DCs in immunotherapy. The growing importance of DCs in the immune system is confirmed by the ever increasing number of published data found in the litera- ture. We felt it timely to commission a contemporary review of the current under- standingofDCfunctioninhealthanddiseaseandtheirpotentialmanipulationfor immunotherapy. Inthefirstpartofthisvolume,theauthorspresentaverycomprehensivereview ofDCsaspivotalcomponentsoftheimmunesystem,asalreadymentioned.Inthe threeinitialchapterswewilllearnwhatiscurrentlyknownaboutactivation,migra- tion, and function of DCs as antigen presenting cells and T-cell activators. These chapterslaythefoundationforthesecondpartofthisvolume,whichdescribesthe role of DCs in diseases. It is clear that DCs are important in many pathological conditions.However,itwouldhavebeenverydifficulttodiscussalloftheminone singlevolume.Wehavechosensomeconditionswheresignificantresearchhasbeen done in the last few years and where DCs have been shown to be a potential ther- apeutictarget(RheumatoidArthritis,AllergicDiseasesandDrugInducedAdverse Reaction). In the last part of the volume we take a closer look at the current status of the specific use of DCs as therapy. The first chapter discusses the intrinsic properties of a subpopulation of pDCs that express IDO following inflammatory conditions andtheircriticalroleasregulatoroftheimmuneresponse.Thechapterfinishesby reviewingtheopportunitytomanipulateIDOexpressioninDCsforimmunotherapy. This review is followed by four chapters where the authors discuss the manipula- tionofDCstoinducetoleranceintransplantationandautoimmunity,usingvarious drugs(Aspirin,Rapamycin,DexamethasoneandVitaminDReceptorAntagonists). ThelastthreechaptersreviewthegeneralknowledgeontheuseofDCstobooster viii Preface theimmuneresponsesinthetreatmentofviralinfections,cancerandinparticular, leukaemia.ThefirstchapterfocusesonthedevelopmentofHIVvaccinesbasedon recombinant adenoviruses (rAd). This review discusses the different types of rAd vectors and their effect in stimulating the DCs and the other cells of the immune system. This chapter is followed by a review of our knowledge of the role played bytypeIIFNsinthedifferentiationandactivationofDCstowardstheprimingand expansion of protective antitumour responses. The chapter finishes by discussing how the type I IFNs could be exploited to develop strategies for an effective can- cerimmunotherapy.Finally,thelastchapterdiscussestheuseofDCvaccinationto overcomethe“intrinsictolerantstate”ofpatientswithacutemyloidleukaemia.The authorsalsomentionthepossibilityofusinganAML-derivedcellline(MUTZ-3), equivalenttoCD34+DCprecursorcells,forvaccinationpurpose. Altogether, the genetic or pharmacological manipulations of DCs and their po- tential use in vaccination have raised expectation and hopes in many areas of re- search concerning the induction of tolerance in autoimmunity and transplantation and the stimulation of the immune responses in cancer and viral infections such as HIV. A great deal of data derived from animal models of human diseases have been published in the last few years from leading laboratories around the world, suggestingthatthistypeoftreatmentisarealpossibilityintheverynearfuture. Wehopethatthisbookwillgivethereaderabetterunderstandingofthebiology ofDCsandwhythesecellsaresuchimportantplayersinthebattleagainstdiseases. We thank our contributors who, with great professionalism, have shared their knowledgeandexpertisewithus. London,UnitedKingdom GiovannaLombardi YaniraVasquez References AbeM,ColvinBL,ThomsonAW(2005)Plasmacytoiddendriticcells:invivoregulatorsofal- loimmunereactivity?TransplantProc37:4119–21 Asselin-PaturelC,BoonstraA,DalodM,DurandI,YessaadN,Dezutter-DambuyantC,VicariA, O’GarraA,BironC,BriereF,TrinchieriG(2001)MousetypeIIFN-producingcellsareim- matureAPCswithplasmacytoidmorphology.NatImmunol2:1144–50 BanchereauJ,BriereF,CauxC,DavoustJ,LebecqueS,LiuYJ,PulendranB,PaluckaK(2000) Immunobiologyofdendriticcells.AnnuRevImmunol18:767–811 BonifazL,BonnyayD,MahnkeK,RiveraM,NussenzweigMC,SteinmanRM(2002)Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads toantigenpresentationonmajorhistocompatibilitycomplexclassIproductsandperipheral CD8+Tcelltolerance.JExpMed196:1627–38 DudziakD,KamphorstAO,HeidkampGF,BuchholzVR,TrumpfhellerC,YamazakiS,CheongC, LiuK,LeeHW,ParkCG,SteinmanRM,NussenzweigMC(2007)Differentialantigenpro- cessingbydendriticcellsubsetsinvivo.Science315:107–11 Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, NussenzweigMC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steadystateconditionsinvivo.JExpMed194:769–79 Preface ix ItoT,YangM,WangYH,LandeR,GregorioJ,PerngOA,QinXF,LiuYJ,GillietM(2007)Plas- macytoiddendriticcellsprimeIL-10-producingTregulatorycellsbyinduciblecostimulator ligand.JExpMed204:105–15 Maldonado-LopezR,MoserM(2001)DendriticcellsubsetsandtheregulationofTh1/Th2re- sponses.SeminImmunol13:275–82 MartinP,DelHoyoGM,AnjuereF,AriasCF,VargasHH,FernandezLA,ParrillasV,ArdavinC (2002)CharacterizationofanewsubpopulationofmouseCD8alpha+B220+dendriticcells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100: 383–90 Masson F, Mount AM, Wilson NS, Belz GT (2008) Dendritic cells: driving the differentiation programmeofTcellsinviralinfections.ImmunolCellBiol86:333–42 Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ, Blazar BR, ChenW(2004)HumanplasmacytoiddendriticcellsactivatedbyCpGoligodeoxynucleotides inducethegenerationofCD4+CD25+regulatoryTcells.JImmunol173:4433–42 OchandoJC,HommaC,YangY,HidalgoA,GarinA,TackeF,AngeliV,LiY,BorosP,DingY, JessbergerR,TrinchieriG,LiraSA,RandolphGJ,BrombergJS(2006)Alloantigen-presenting plasmacytoiddendriticcellsmediatetolerancetovascularizedgrafts.NatImmunol7:652–62 PulendranB,TangH,DenningTL(2008)Divisionoflabor,plasticity,andcrosstalkbetweenden- driticcellsubsets.CurrOpinImmunol20:61–7 RellosoM,Puig-KrogerA,PelloOM,Rodriguez-FernandezJL,delaRosaG,LongoN,NavarroJ, Munoz-FernandezMA,Sanchez-MateosP,CorbiAL(2002)DC-SIGN(CD209)expressionis IL-4dependentandisnegativelyregulatedbyIFN,TGF-beta,andanti-inflammatoryagents. JImmunol168:2634–43 Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V (2004) CpG-matured murine plasmacytoiddendriticcellsarecapableofinvivoprimingoffunctionalCD8Tcellresponses toendogenousbutnotexogenousantigens.JExpMed199:567–79 SallustoF,LanzavecchiaA(1994)Efficientpresentationofsolubleantigenbyculturedhumanden- driticcellsismaintainedbygranulocyte/macrophagecolony-stimulatingfactorplusinterleukin 4anddownregulatedbytumornecrosisfactoralpha.JExpMed179:1109–18 ShortmanK,NaikSH(2007)Steady-stateandinflammatorydendritic-celldevelopment.NatRev Immunol7:19–30 Contents PartI BiologyofDendriticCells ActivationofDendriticCellsbyToll-LikeReceptors andC-TypeLectins.............................................. 3 SandraS.Diebold DendriticCellMigrationtoPeripheralLymphNodes ................. 31 AlfonsoMart´ın-Fontecha,AntonioLanzavecchia,andFedericaSallusto DendriticCellsinViralInfections.................................. 51 GabrielleBelz,AdeleMount,andFrederickMasson PartII RoleofDendriticCellsinDisease Dendritic Cells and their Potential Implication in Pathology andTreatmentofRheumatoidArthritis............................. 81 M.H.Wenink,W.Han,R.E.M.Toes,andT.R.D.J.Radstake LungDendriticCells:TargetsforTherapyinAllergicDisease .......... 99 BartN.LambrechtandHamidaHammad DendriticCellsinRhinitis ........................................ 115 AlexKleinJanandBartN.Lambrecht Role of Epidermal Dendritic Cells in Drug-Induced Cutaneous AdverseReactions............................................... 137 Maria Dolores Ramirez-Gonzalez, Miguel Herrera-Enr´ıquez, LuisaGeraldineVillanueva-Rodr´ıguez,andAndre´sEliuCastell-Rodr´ıguez xi xii Contents PartIII ManipulationofDendriticCellsforImmunotherapy TCellRegulatoryPlasmacytoidDendriticCellsExpressingIndoleamine 2,3Dioxygenase................................................. 165 DavidJ.KahlerandAndrewL.Mellor AspirinandtheInductionofTolerancebyDendriticCells ............. 197 MatthewBucklandandGiovannaLombardi UseofRapamycinintheInductionofTolerogenicDendriticCells....... 215 RyanFischer,HethR.Turnquist,Timuc¸inTaner,andAngusW.Thomson HandbookofExperimentalPharmacology“DendriticCells” ........... 233 Cees van Kooten, Annelein S. Stax, Andrea M. Woltman, andKyraA.Gelderman InductionofTolerogenicDendriticCellsbyVitaminD ReceptorAgonists............................................... 251 LucianoAdoriniandGiuseppePenna UseofAdenovirusinVaccinesforHIV ............................. 275 StevenPatterson,TimosPapagatsias,andAdelBenlahrech IFN-alpha in the Generation of Dendritic Cells forCancerImmunotherapy....................................... 295 Stefano Maria Santini, Caterina Lapenta, Laura Santodonato, GiuseppinaD’Agostino,FilippoBelardelli,andMariaFerrantini Dendritic Cell-Based Immunotherapy in Myeloid Leukaemia: TranslatingFundamentalMechanismsintoClinicalApplications ....... 319 A.A. van de Loosdrecht, W. van den Ancker, I. Houtenbos, G.J.Ossenkoppele,andT.M.Westers Index .............................................................349