Demystifying Electromagnetic Equations A Complete Explanation of EM Unit Systems and Equation Transformations Douglas L. Cohen Demystifying Electromagnetic Equations A Complete Explanation of EM Unit Systems and Equation Transformations Demystifying Electromagnetic Equations A Complete Explanation of EM Unit Systems and Equation Transformations Douglas L. Cohen Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data Cohen, Douglas L. Demystifying electromagnetic equations : a complete explanation of EM unit systems and equation transformations / by Douglas L. Cohen. p. cm. Includes bibliographical references and index. ISBN 0-8194-4234-8 1.Electromagnetic theory–Mathematics. 2. Electric units. I. Title. QC670 .C49 2001 530.14'1'0151--dc21 2001032770 Published by SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 Phone: 360.676.3290 Fax: 360.647.1445 Email: [email protected] WWW: www.spie.org Copyright © 2001 The Society of Photo-Optical Instrumentation Engineers All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher. Printed in the United States of America. Contents Preface vii 1 OutlineofNon-ElectromagneticSystemsofUnits . . . . . . . . . . . 1 1.1 Thebasicideaofaunit. . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Fundamentalandderivedunits . . . . . . . . . . . . . . . . . . . 4 1.3 Analysisofequationsandformulas . . . . . . . . . . . . . . . . . 9 1.4 Dimensionlessparameters . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Thecgsandmksmechanicalsystemsofunits . . . . . . . . . . . 14 1.6 TheUandNoperators . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 Temperatureunits . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.8 Dimensionlessunits . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.9 Removaloftheuniversalgasconstantfromtheidealgaslaw . . . 29 1.10 Removalofthespeedoflightfromrelativisticequations . . . . . 37 1.11 Invariantunits,connectingunits,andadditionofextradimensions 50 1.12 Simultaneousremovalofh¯,c,andk . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2 UnitsAssociatedwithNineteenth-CenturyElectromagneticTheory 65 2.1 Electricfields,magneticfields,andCoulomb’slaw . . . . . . . . 66 2.2 Combinedsystemsofelectricandmagneticunits . . . . . . . . . 70 2.3 Theesuandemusystemsofunits . . . . . . . . . . . . . . . . . . 75 2.4 TheDandBfields . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.5 Theelectricandmagneticpotentials . . . . . . . . . . . . . . . . 89 2.6 Thesystemofpracticalunits . . . . . . . . . . . . . . . . . . . . 91 2.7 The“ab-”and“stat-”prefixes . . . . . . . . . . . . . . . . . . . . 96 2.8 Theesuqandemuqsystemsofunits . . . . . . . . . . . . . . . . 104 2.9 The esuq and emuq connectionwith the esu and emu systems ofunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.10 Directconversionbetweentheesuandemusystemsofunits . . . 125 2.11 TheBandH fieldsatthestartofthetwentiethcentury . . . . . . 128 2.12 Electromagneticconceptsusedtoanalyzebulkmatter. . . . . . . 133 Appendix 2.A: Magnetic-field measurementin the early nine- teenthcentury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Appendix2.B:Dimensionlessvectorderivatives . . . . . . . . . . 139 v vi CONTENTS 3 UnitsAssociatedwithTwentieth-CenturyElectromagneticTheory . 149 3.1 Maxwell’sequations . . . . . . . . . . . . . . . . . . . . . . . . . 150 3.2 TheGaussiansystemofunits . . . . . . . . . . . . . . . . . . . . 151 3.3 RationalizationandtheHeaviside-Lorentzsystem . . . . . . . . . 166 3.4 Gaussian and Heaviside-Lorentz systems with c=1 and h¯ = c=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 3.5 Equivalenceoftheesu,emu,andGaussiansystemswhenc=1 . 180 3.6 Rationalizedandunrationalizedmkssystems . . . . . . . . . . . 183 3.7 Conversionofequationstoandfromtheunrationalizedmkssystem190 3.8 Conversionofequationstoandfromtherationalizedmkssystem 204 3.9 Evaluationoftherationalizedmkssystem . . . . . . . . . . . . . 223 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 4 Two Standard Shortcuts Used to Transform Electromagnetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 4.1 Thefree-parametermethod . . . . . . . . . . . . . . . . . . . . . 225 4.2 Basicequationsusingthefreeparametersk ,(cid:1)µ,(cid:1)ε,and(cid:6) . . . . 236 0 4.3 Understandingthesubstitutiontables . . . . . . . . . . . . . . . . 274 4.4 Usingthesubstitutiontables . . . . . . . . . . . . . . . . . . . . . 278 4.5 Problemswiththefree-parametermethodandsubstitutiontables 291 Appendix.Substitutiontables . . . . . . . . . . . . . . . . . . . . 292 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Bibliography 325 Index 329 Preface In classical Newtonian mechanics, equations and formulas never change form. However,thesamethingcannotbesaidabouttheequationsandformulasofelec- tromagnetictheory,which oftenchangeformwhenconvertedfromonesystemof unitstoanother.Forthisreasonelectromagnetictextbooksarealmostalwayswrit- ten using a single systemof units, and the technicalprofessionals who read them end up being comfortable in only that system. When they encounter a new and important formula in unfamiliar units later on, they must either use a conversion table to change the formula to their preferred system of units or try to become familiarwiththeformula’sunits.Althoughconversiontablesusuallygivethecor- rect answer, they turn their users into computers who must push around numbers andvariableswithoutanytrueunderstandingofwhatisbeingdone.Itisprobably unwisetorelyblindlyonconversiontablesifonemustbeabsolutelysurethetrans- formed formula is correct. Thatleavesthe secondoption: becomingfamiliar with theformula’sunits.Thedrawbackhereisthatevenifatextbookcanbefoundthat usestheformula’sunits,ithasbeenwrittentoteachthebasicprinciplesofelectro- magnetismratherthanwhatthetechnicalprofessionalislookingfor,i.e.,adetailed explanationofhowtoconvertequationsfromonesystemofunitstoanother.This bookprovidesexactlythat,whileatthesametimeassumingagood—butnotnec- essarilyadvanced—understandingofelectricityandmagnetism. There are five widely recognized systems of electromagnetic units; four are connected to the centimeter-gram-second (cgs) system of mechanical units and oneis connectedto themeter-kilogram-second(mks)systemofmechanicalunits. The four connected to the cgs mechanical units are the cgs Gaussian system, the Heaviside-Lorentz system, the cgs electrostatic system, and the cgs electromag- netic system. The system connected to the mks mechanical units is the Système International or rationalized mks system. The units of the Système International orrationalized mkssystemare often called SIunits. Thecgselectrostatic andcgs electromagneticsystemsofunitsweredevelopedfirst.Thesearetheunitsinwhich Maxwell’s equations—the foundation of classical electromagnetic theory—were firstproposedduringthemiddleofthenineteenthcentury.TheHeaviside-Lorentz and cgs Gaussian systems were introduced at the end of the nineteenth century, followed almost immediately at the beginning of the twentieth century by the ra- tionalizedmkssystem(SIunits).Therationalizedmkssystemisthemostpopular electromagneticsysteminusetoday;almostallintroductorytextbooksuseSIunits to explain the principles of electricity and magnetism. This book explains all five systems in depth, along with two systems of mostly historical interest; the nine- teenthcenturysystemof“practical”unitsandtheunrationalizedmkssystem. vii viii PREFACE Onechronicproblemfoundin manyarticlesandbooksaboutsystemsofunits is that the customary language of physics and engineering can permit ambiguity whilesoundingexact.Suppose,forexample,wesay “The electric-current unit in the cgs electrostatic system is the statamp and the electric-currentunitinthecgselectromagneticsystemistheabamp,with 1abamp=c·statamp wherec isthespeedoflightincgsunits.” This seems clear enough, but notice that c =2.99792·1010cm/sec in cgs units. In the above equation, should we take “c” to be “2.99792·1010” or “2.99792× 1010cm/sec?”Anaivestudentmightassumecwasthepurenumber2.99792·1010 becauseobviously all electric current is the same sort of thing and must have the same type of unit; but later on, possiblyin anotherbook,that same studentmight discover the cgs electrostatic unit of current is gm1/2 ·cm3/2·sec−2 and the cgs electromagnetic unit of current is gm1/2 ·cm1/2 ·sec−1. At this point confusion setsin,becausethisisnotcompatiblewiththeequation1abamp=c·statamp,no matterhowitisinterpreted. Toavoidthissortofambiguity,weintroduceheretheideaofUandNoperators, with a U operator returning just the units associatedwith a physicalquantity and an N operator returning just the pure number, or numeric component, associated withaphysicalquantity.Inthecgssystem,forexample,wehave N(c)=2.99792·1010 cgs and U(c)=cm/sec. cgs Authorswhoputtheequation1abamp=c·statampintheirbooksandarticlesare usingitto saythat N(c)istheconversionfactorbetweenthenumericcomponent cgs ofthecurrentI incgselectrostaticunits, N(I),andthenumericcomponentofthe esu currentI incgselectromagneticunits, N (I). emu N(I)= N(c)· N (I). esu cgs emu TheUoperatorcanbeusedtoemphasizethattheunitofcurrentintheelectrostatic systemisnotthesameastheunitofcurrentintheelectromagneticsystem. gm1/2·cm3/2 gm1/2·cm1/2 = U(I)(cid:5)= U (I)= sec2 esu emu sec PREFACE ix TheUandNoperatorsmakeiteasytobepreciseaboutthemathematicalrelation- shipsbetweendifferentsystemsofunits. TheabbreviationsoftheSIunitsare,unfortunately,anotherpossiblesourceof confusionwhen separating equationsinto numeric componentsand units. For ex- ample,thestandardabbreviationfortheSIunitofcharge,the coulomb, is C. The capacitanceofacircuitelementisalsotraditionallyrepresentedasC,andwehave already seenthat c is usedto representthe speedoflight. If all three quantities— the coulomb, the speed of light, and the capacitance—have to be included in the sameequation,therewillbeproblems.Toavoidthissourceofconfusion,wehave lengthened the standard abbreviations for the electromagnetic units, representing coulomb by coul,ampere by amp, and so on. This makes the notation less con- fusing,butthereadershouldnotethattheabbreviationsusedhere,althougheasily understandable, are not the official, internationally approved symbols for the SI units.Theseinternationalsymbolsare,inanycase,offairlyrecentvintageandcan befoundinvirtuallyallmoderntextbooksonelectromagnetictheory. One final point worth mentioning is how we treat rationalization of electro- magnetic equations. During the middle of the twentieth century it became clear that there were two different schools of thought concerning the rationalization of electromagneticequations:onethatitwasarescalingoftheelectromagneticunits, and the other that it was a rescaling of the electromagneticquantities themselves. Bothviewscanbeusedtodeducethesamesystemsofelectromagneticequations, and both views allow engineers and scientists to transform electromagnetic mea- surementsfromonesystemtoanothercorrectly.Intheend,neithersideconvinced the other of the correctness of its views and the controversy faded away. For the purposes of this book, we take the position that rationalization is a rescaling of electromagneticphysicalquantitiesratherthanachangeofunits,notonlybecause it is then easier to describe the units of the rationalized and unrationalized elec- tromagnetic systems but also becauseit makes the transformation of equations to andfromrationalizedelectromagneticsystemsa straightforward process.Theop- posite position, that rationalization just involves rescaled units, is not necessarily incorrect—thatis,afterall,howtheideaofrationalizationwasfirstproposedinthe nineteenthcentury—butitcaneasilybecomeconfusinginabookofthissort.