M D oe ne gp -F L oe na g Hornrning A gp , Hp sulic -Yat angion Ks w u nit Deep Learning gh , C P hi-rac Ht uic aa Chl M Applications ee na as nu d Fred en R ge with Practical -Jsu anlt g Hs in w E anglect Measured Results r o n ic s I n d u in Electronics s t r ie s Industries Edited by Mong-Fong Horng, Hsu-Yang Kung, Chi-Hua Chen and Feng-Jang Hwang Printed Edition of the Special Issue Published in Electronics www.mdpi.com/journal/electronics Deep Learning Applications with Practical Measured Results in Electronics Industries Deep Learning Applications with Practical Measured Results in Electronics Industries SpecialIssueEditors Mong-FongHorng Hsu-YangKung Chi-HuaChen Feng-JangHwang MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade Special Issue Editors Mong-Fong Horng Hsu-YangKung Chi-HuaChen Ph. D Program in Biomedical DepartmentofManagement CollegeofMathematicsand Engineering, Kaohsiung InformationSystems,National ComputerScience, Medical University PingtungUniversityofScience FuzhouUniversity Taiwan andTechnology China Taiwan Feng-Jang Hwang School of Mathematical and Physical Sciences, University of Technology Sydney Australia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalElectronics (ISSN 2079-9292) from 2019 to 2020 (available at: https://www.mdpi.com/journal/electronics/ specialissues/deeplearningelectronicsindustry). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03928-863-2(Pbk) ISBN978-3-03928-864-9(PDF) (cid:2)c 2020bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Mong-FongHorng,Hsu-YangKung,Chi-HuaChenandFeng-JangHwang DeepLearningApplicationswithPracticalMeasuredResultsinElectronicsIndustries Reprintedfrom:Electronics2020,9,501,doi:10.3390/electronics9030501 . . . . . . . . . . . . . . . 1 IoannisP.Panapakidis,ConstantineMichailidesandDemosC.Angelides AData-DrivenShort-TermForecastingModelforOffshoreWindSpeedPredictionBasedon ComputationalIntelligence Reprintedfrom:Electronics2019,8,420,doi:10.3390/electronics8040420 . . . . . . . . . . . . . . . 9 RenzhuoWan,ShupingMei,JunWang,MinLiuandFanYang Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for MultivariateTimeSeriesForecasting Reprintedfrom:Electronics2019,8,876,doi:10.3390/electronics8080876 . . . . . . . . . . . . . . . 24 WeiXu,XiaoyuFengandHongyanXing ModelingandAnalysisofAdaptiveTemperatureCompensationforHumiditySensors Reprintedfrom:Electronics2019,8,425,doi:10.3390/electronics8040425 . . . . . . . . . . . . . . . 42 FanZhang,ZhichaoXu,WeiChen,ZizheZhang,HaoZhong,JiaxingLuanandChuangLi AnImageCompressionMethodforVideoSurveillanceSysteminUndergroundMinesBased onResidualNetworksandDiscreteWaveletTransform Reprintedfrom:Electronics2019,8,1559,doi:10.3390/electronics8121559 . . . . . . . . . . . . . . 56 HaoZhou,Hai-LingXiong,YunLiu,Nong-DieTanandLeiChen TrajectoryPlanningAlgorithmofUAVBasedonSystemPositioningAccuracyConstraints Reprintedfrom:Electronics2020,9,250,doi:10.3390/electronics9020250 . . . . . . . . . . . . . . . 76 FanZhang,YaleiFan,TaoCai,WendaLiu,ZhongqiuHu,NengqingWangandMinghuWu OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission LineMaintenance Reprintedfrom:Electronics2019,8,1270,doi:10.3390/electronics8111270 . . . . . . . . . . . . . . 97 DeyuWang,WeidongFang,WeiChen,TongfengSunandTingjieChen ModelUpdateStrategiesaboutObjectTracking:AStateoftheArtReview Reprintedfrom:Electronics2019,8,1207,doi:10.3390/electronics8111207 . . . . . . . . . . . . . . 111 ChenWang,EmilioGo´mezandYingjieYu Characterization and Correction of the Geometric Errors in Using Confocal Microscope for ExtendedTopographyMeasurement.PartI:Models,AlgorithmsDevelopmentandValidation Reprintedfrom:Electronics2019,8,733,doi:10.3390/electronics8070733 . . . . . . . . . . . . . . . 142 ChenWang,EmilioGo´mezandYingjieYu Characterization and Correction of the Geometric Errors Using a Confocal Microscope for ExtendedTopographyMeasurement,PartII:ExperimentalStudyandUncertaintyEvaluation Reprintedfrom:Electronics2019,8,1217,doi:10.3390/electronics8111217 . . . . . . . . . . . . . . 163 LianleiLin,CailuChen,JingliYangandShanshanZhang Deep Transfer HSI Classification Method Based on Information Measure and Optimal NeighborhoodNoiseReduction Reprintedfrom:Electronics2019,8,1112,doi:10.3390/electronics8101112 . . . . . . . . . . . . . . 181 v Chuan-Yu Chang, Kathiravan Srinivasan, Wei-Chun Wang, Ganapathy Pattukandan Ganapathy,DuraiRajVincentandNDeepa Quality Assessment of Tire Shearography Images via Ensemble Hybrid Faster Region-BasedConvNets Reprintedfrom:Electronics2020,9,45,doi:10.3390/electronics9010045 . . . . . . . . . . . . . . . 204 TingzhuSun,WeidongFang,WeiChen,YanxinYao,FangmingBiandBaoleiWu High-ResolutionImageInpaintingBasedonMulti-ScaleNeuralNetwork Reprintedfrom:Electronics2019,8,1370,doi:10.3390/electronics8111370 . . . . . . . . . . . . . . 217 PiotrSulikowskiandTomaszZdziebko Deep Learning-Enhanced Framework for Performance Evaluation of a Recommending Interface with Varied Recommendation Position and Intensity Based on Eye-Tracking EquipmentDataProcessing Reprintedfrom:Electronics2020,9,266,doi:10.3390/electronics9020266 . . . . . . . . . . . . . . . 231 LiuZhang,ChaoShu,JinGuo,HanyiZhang,ChengXieandQingLiu GenerativeAdversarialNetwork-BasedNeuralAudioCaptionModelforOralEvaluation Reprintedfrom:Electronics2020,9,424,doi:10.3390/electronics9030424 . . . . . . . . . . . . . . . 246 vi About the Special Issue Editors Mong Fong Horng received his Ph.D. degrees from the Computer Sciences and Information EngineeringDepartment,NationalChengKungUniversity,Taiwanin2003. Henowisaprofessor withthedepartmentofElectronicEngineeringattheNationalKaohsiungUniversityofScienceand TechnologyandKaohsiungMedicalUniversity,Taiwan.HeisalsoatechnicaldirectoroftheInstitute ofInformationIndustrial.Asof2018,Dr.Hornghadpublished132academicpapersand6textbooks about his research. Based on the researches, Prof. Horng has been granted 14 Taiwan patents and2U.S.patents. HeservesasamemberofIEEESMCTechnicalCommitteeonComputational CollectiveIntelligence,thepresidentoftheTaiwaneseAssociationofConsumerElectronics(TACE) andTainanChapter,SignalProcessingSociety,IEEE.Dr.Horngcontributedtotheeditorialboardsof InternationalJournalofKnowledgeEngineeringandSoftDataParadigmspublishedbyElsevier.Dr.Horng hasreceivedawardsfromtheMinistryofScienceandTechnologyandMinistryofEducationdue to his outstanding performance inindustrial cooperation and supervision of student competition. Dr. Hornghashosted12researchprojectsfundedbytheMinistryofScienceandTechnology,anda Special Issue of the Journal of Innovative Computing, Information and Control in 2011. His research interestsincludecomputationalintelligence,theInternetofThings,networkfunctionvirtualization, andtheInternet. Hsu-YangKungreceivedhisPh.D.degreeinComputerScienceandInformationEngineeringfrom National Cheng-Kung University, Taiwan, ROC. He is currently a distinguished professor in the Department of Management Information Systems, National Pingtung University of Science and Technology,Taiwan,ROC.Prof.Kunghaspublishedaround300academicpapersandreceived14te best paper awards. He received the special talent award 8 times and the excellent team award 8 timesintheOpenSoftwareDevelopmentProjectPlanfromtheMinistryofScienceandTechnology. HereceivedtheoutstandingperformanceandspecialcontributionsawardintheInnovativeTalents PromotionProgramfortheCommunicationSoftwarefromtheMinistryofEducation. Hehasled morethan100industrialandacademicresearchprojectsandowns26patents. Healsoservedasa GuestEditorforthejournalsofAgronomy, Electronics, MathematicalProblemsinEngineering, Journal ofElectricalandComputerEngineering, AdvancesinMultimedia, andIEEETechnologyandEngineering Education. His research interests include IoT middleware, cloud computing, wireless and mobile communications,andintelligentIoTapplicationsinprecisionagriculture. Chi-Hua Chen is a distinguished professor at Fuzhou University and a chair professor at Dalian MaritimeUniversity. HereceivedhisPh.D.degreefromNationalChiaoTungUniversity(NCTU) in 2013. He has served as an assistant professor for the National Tsing Hua University, NCTU, NationalTaipeiUniversity,andNationalKaohsiungUniversityofScienceandTechnology. Hehas served as a research fellow for the Telecommunication Laboratories of Chunghwa Telecom Co. Ltd. He has published over 230 academic articles and owns 50 patents. Some of these academic articles were published in IEEE Internet of Things Journal, IEICE Transactions, etc. He has hosted several projects that were funded by the National Natural Science Foundation of China, Fujian Province,etc. HeservesasaneditorforseveralSCI-indexedjournals(e.g.,IEEEAccess,Biosensors, EURASIP Journal on Wireless Communications and Networking, International Journal of Distributed SensorNetworks, DiscreteDynamicsinNatureandSociety, MathematicalProblemsinEngineering, etc.). vii His recent research interests include the Internet of Things, machine learning and deep learning, mobilecommunications,andintelligenttransportationsystems. Feng-JangHwangisaSeniorLecturer(LevelC,AssociateProfessorshipequivalencyintheNorth Americanacademicsystem)andtheLeadingPIoftheIndustrialOptimisationGroupattheSchool ofMathematicalandPhysicalSciences, UniversityofTechnologySydney. HeearnedhisPh.D.in InformationManagementfromtheNationalChiaoTungUniversityin2011. F.J.waselectedtothe honorarymembershipofthePhi-Tau-PhiScholasticSocietytwice. Hewasthenomineeforthe2016 Australian Society for Operations Research Rising Star Award and the winner of the 2017 Albert NelsonMarquisAchievementAward.Hisresearchinterestscentrearoundproductionmodellingand scheduling, supplychainandlogisticsoptimisation, data-drivenoptimization, andcomputational intelligence. F.J. has published in leading journals including Journal of Scheduling, Annals of OperationsResearch,JournaloftheOperationalResearchSociety,Computers&OperationsResearch,Discrete Optimization,EngineeringOptimization,IEEEAccess,InternationalJournalofSustainableTransportation, etc. He has served as the guest editor for several international journals, including International Journal of Distributed Sensor Network, EURASIP Journal on Wireless Communications and Networking, Electronics,andAgronomy. Hehasbeeninvitedtogivemorethan30researchtalksandconference presentations. His professional experience includes a logistics officer (ensign) at Taiwan Navy headquarters, aresearchassistantattheInstituteofStatisticalScienceinAcademiaSinica, aswell asapostdoctoralfellowatNationalTsingHuaUniversity,NationalChiaoTungUniversity,andthe WarwickBusinessSchool. viii electronics Editorial Deep Learning Applications with Practical Measured Results in Electronics Industries Mong-FongHorng1,Hsu-YangKung2,Chi-HuaChen3,*andFeng-JangHwang4 1 DepartmentofElectronicEngineering,NationalKaohsiungUniversityofScienceandTechnology, Kaohsiung80778,Taiwan;[email protected] 2 DepartmentofManagementInformationSystems,NationalPingtungUniversityofScienceandTechnology, Pingtung91201,Taiwan;[email protected] 3 CollegeofMathematicsandComputerScience,FuzhouUniversity,Fuzhou350100,China 4 SchoolofMathematicalandPhysicalSciences,UniversityofTechnologySydney,Ultimo,NSW2007, Australia;[email protected] * Correspondence:[email protected];Tel.:+86-18359183858 Received:11March2020;Accepted:12March2020;Published:19March2020 Abstract: ThiseditorialintroducestheSpecialIssue,entitled“DeepLearningApplicationswith PracticalMeasuredResultsinElectronicsIndustries”,ofElectronics. Topicscoveredinthisissue includefourmainparts:(I)environmentalinformationanalysesandpredictions,(II)unmannedaerial vehicle(UAV)andobjecttrackingapplications,(III)measurementanddenoisingtechniques,and (IV)recommendationsystemsandeducationsystems.Fourpapersonenvironmentalinformation analysesandpredictionsareasfollows:(1)“AData-DrivenShort-TermForecastingModelforOffshore WindSpeedPredictionBasedonComputationalIntelligence”byPanapakidisetal.;(2)“Multivariate TemporalConvolutionalNetwork:ADeepNeuralNetworksApproachforMultivariateTimeSeries Forecasting”byWanetal.;(3)“ModelingandAnalysisofAdaptiveTemperatureCompensation forHumiditySensors”byXuetal.;(4)“AnImageCompressionMethodforVideoSurveillance SysteminUndergroundMinesBasedonResidualNetworksandDiscreteWaveletTransform”by Zhangetal. ThreepapersonUAVandobjecttrackingapplicationsareasfollows: (1)“Trajectory PlanningAlgorithmofUAVBasedonSystemPositioningAccuracyConstraints”byZhouetal.; (2)“OTL-Classifier: TowardsImagingProcessingforFutureUnmannedOverheadTransmission LineMaintenance”byZhangetal.;(3)“ModelUpdateStrategiesaboutObjectTracking: AState oftheArtReview”byWangetal. Fivepapersonmeasurementanddenoisingtechniquesareas follows:(1)“CharacterizationandCorrectionoftheGeometricErrorsinUsingConfocalMicroscope forExtendedTopographyMeasurement.PartI:Models,AlgorithmsDevelopmentandValidation”by Wangetal.;(2)“CharacterizationandCorrectionoftheGeometricErrorsUsingaConfocalMicroscope forExtendedTopographyMeasurement,PartII:ExperimentalStudyandUncertaintyEvaluation”by Wangetal.;(3)“DeepTransferHSIClassificationMethodBasedonInformationMeasureandOptimal NeighborhoodNoiseReduction”byLinetal.;(4)“QualityAssessmentofTireShearographyImages viaEnsembleHybridFasterRegion-BasedConvNets”byChangetal.;(5)“High-ResolutionImage InpaintingBasedonMulti-ScaleNeuralNetwork”bySunetal. Twopapersonrecommendation systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for PerformanceEvaluationofaRecommendingInterfacewithVariedRecommendationPositionand IntensityBasedonEye-TrackingEquipmentDataProcessing”bySulikowskietal.and(2)“Generative AdversarialNetworkBasedNeuralAudioCaptionModelforOralEvaluation”byZhangetal. Keywords: deep learning; machine learning; supervised learning; unsupervised learning; reinforcementlearning;optimizationtechniques Electronics2020,9,501;doi:10.3390/electronics9030501 1 www.mdpi.com/journal/electronics