Table Of ContentM D
oe
ne
gp
-F L
oe
na
g Hornrning A
gp
, Hp
sulic
-Yat
angion
Ks w
u
nit Deep Learning
gh
, C P
hi-rac
Ht
uic
aa
Chl M Applications
ee
na
as
nu
d Fred
en R
ge with Practical
-Jsu
anlt
g Hs in
w E
anglect Measured Results
r
o
n
ic
s
I
n
d
u in Electronics
s
t
r
ie
s
Industries
Edited by
Mong-Fong Horng, Hsu-Yang Kung, Chi-Hua Chen and
Feng-Jang Hwang
Printed Edition of the Special Issue Published in Electronics
www.mdpi.com/journal/electronics
Deep Learning Applications with
Practical Measured Results in
Electronics Industries
Deep Learning Applications with
Practical Measured Results in
Electronics Industries
SpecialIssueEditors
Mong-FongHorng
Hsu-YangKung
Chi-HuaChen
Feng-JangHwang
MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade
Special Issue Editors
Mong-Fong Horng Hsu-YangKung Chi-HuaChen
Ph. D Program in Biomedical DepartmentofManagement CollegeofMathematicsand
Engineering, Kaohsiung InformationSystems,National ComputerScience,
Medical University PingtungUniversityofScience FuzhouUniversity
Taiwan andTechnology China
Taiwan
Feng-Jang Hwang
School of Mathematical and
Physical Sciences, University of
Technology Sydney
Australia
Editorial Office
MDPI
St. Alban-Anlage 66
4052 Basel, Switzerland
ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalElectronics
(ISSN 2079-9292) from 2019 to 2020 (available at: https://www.mdpi.com/journal/electronics/
specialissues/deeplearningelectronicsindustry).
Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas
indicatedbelow:
LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber,
PageRange.
ISBN978-3-03928-863-2(Pbk)
ISBN978-3-03928-864-9(PDF)
(cid:2)c 2020bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum
disseminationandawiderimpactofourpublications.
ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons
licenseCCBY-NC-ND.
Contents
AbouttheSpecialIssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Mong-FongHorng,Hsu-YangKung,Chi-HuaChenandFeng-JangHwang
DeepLearningApplicationswithPracticalMeasuredResultsinElectronicsIndustries
Reprintedfrom:Electronics2020,9,501,doi:10.3390/electronics9030501 . . . . . . . . . . . . . . . 1
IoannisP.Panapakidis,ConstantineMichailidesandDemosC.Angelides
AData-DrivenShort-TermForecastingModelforOffshoreWindSpeedPredictionBasedon
ComputationalIntelligence
Reprintedfrom:Electronics2019,8,420,doi:10.3390/electronics8040420 . . . . . . . . . . . . . . . 9
RenzhuoWan,ShupingMei,JunWang,MinLiuandFanYang
Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for
MultivariateTimeSeriesForecasting
Reprintedfrom:Electronics2019,8,876,doi:10.3390/electronics8080876 . . . . . . . . . . . . . . . 24
WeiXu,XiaoyuFengandHongyanXing
ModelingandAnalysisofAdaptiveTemperatureCompensationforHumiditySensors
Reprintedfrom:Electronics2019,8,425,doi:10.3390/electronics8040425 . . . . . . . . . . . . . . . 42
FanZhang,ZhichaoXu,WeiChen,ZizheZhang,HaoZhong,JiaxingLuanandChuangLi
AnImageCompressionMethodforVideoSurveillanceSysteminUndergroundMinesBased
onResidualNetworksandDiscreteWaveletTransform
Reprintedfrom:Electronics2019,8,1559,doi:10.3390/electronics8121559 . . . . . . . . . . . . . . 56
HaoZhou,Hai-LingXiong,YunLiu,Nong-DieTanandLeiChen
TrajectoryPlanningAlgorithmofUAVBasedonSystemPositioningAccuracyConstraints
Reprintedfrom:Electronics2020,9,250,doi:10.3390/electronics9020250 . . . . . . . . . . . . . . . 76
FanZhang,YaleiFan,TaoCai,WendaLiu,ZhongqiuHu,NengqingWangandMinghuWu
OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission
LineMaintenance
Reprintedfrom:Electronics2019,8,1270,doi:10.3390/electronics8111270 . . . . . . . . . . . . . . 97
DeyuWang,WeidongFang,WeiChen,TongfengSunandTingjieChen
ModelUpdateStrategiesaboutObjectTracking:AStateoftheArtReview
Reprintedfrom:Electronics2019,8,1207,doi:10.3390/electronics8111207 . . . . . . . . . . . . . . 111
ChenWang,EmilioGo´mezandYingjieYu
Characterization and Correction of the Geometric Errors in Using Confocal Microscope for
ExtendedTopographyMeasurement.PartI:Models,AlgorithmsDevelopmentandValidation
Reprintedfrom:Electronics2019,8,733,doi:10.3390/electronics8070733 . . . . . . . . . . . . . . . 142
ChenWang,EmilioGo´mezandYingjieYu
Characterization and Correction of the Geometric Errors Using a Confocal Microscope for
ExtendedTopographyMeasurement,PartII:ExperimentalStudyandUncertaintyEvaluation
Reprintedfrom:Electronics2019,8,1217,doi:10.3390/electronics8111217 . . . . . . . . . . . . . . 163
LianleiLin,CailuChen,JingliYangandShanshanZhang
Deep Transfer HSI Classification Method Based on Information Measure and Optimal
NeighborhoodNoiseReduction
Reprintedfrom:Electronics2019,8,1112,doi:10.3390/electronics8101112 . . . . . . . . . . . . . . 181
v
Chuan-Yu Chang, Kathiravan Srinivasan, Wei-Chun Wang, Ganapathy Pattukandan
Ganapathy,DuraiRajVincentandNDeepa
Quality Assessment of Tire Shearography Images via Ensemble Hybrid Faster
Region-BasedConvNets
Reprintedfrom:Electronics2020,9,45,doi:10.3390/electronics9010045 . . . . . . . . . . . . . . . 204
TingzhuSun,WeidongFang,WeiChen,YanxinYao,FangmingBiandBaoleiWu
High-ResolutionImageInpaintingBasedonMulti-ScaleNeuralNetwork
Reprintedfrom:Electronics2019,8,1370,doi:10.3390/electronics8111370 . . . . . . . . . . . . . . 217
PiotrSulikowskiandTomaszZdziebko
Deep Learning-Enhanced Framework for Performance Evaluation of a Recommending
Interface with Varied Recommendation Position and Intensity Based on Eye-Tracking
EquipmentDataProcessing
Reprintedfrom:Electronics2020,9,266,doi:10.3390/electronics9020266 . . . . . . . . . . . . . . . 231
LiuZhang,ChaoShu,JinGuo,HanyiZhang,ChengXieandQingLiu
GenerativeAdversarialNetwork-BasedNeuralAudioCaptionModelforOralEvaluation
Reprintedfrom:Electronics2020,9,424,doi:10.3390/electronics9030424 . . . . . . . . . . . . . . . 246
vi
About the Special Issue Editors
Mong Fong Horng received his Ph.D. degrees from the Computer Sciences and Information
EngineeringDepartment,NationalChengKungUniversity,Taiwanin2003. Henowisaprofessor
withthedepartmentofElectronicEngineeringattheNationalKaohsiungUniversityofScienceand
TechnologyandKaohsiungMedicalUniversity,Taiwan.HeisalsoatechnicaldirectoroftheInstitute
ofInformationIndustrial.Asof2018,Dr.Hornghadpublished132academicpapersand6textbooks
about his research. Based on the researches, Prof. Horng has been granted 14 Taiwan patents
and2U.S.patents. HeservesasamemberofIEEESMCTechnicalCommitteeonComputational
CollectiveIntelligence,thepresidentoftheTaiwaneseAssociationofConsumerElectronics(TACE)
andTainanChapter,SignalProcessingSociety,IEEE.Dr.Horngcontributedtotheeditorialboardsof
InternationalJournalofKnowledgeEngineeringandSoftDataParadigmspublishedbyElsevier.Dr.Horng
hasreceivedawardsfromtheMinistryofScienceandTechnologyandMinistryofEducationdue
to his outstanding performance inindustrial cooperation and supervision of student competition.
Dr. Hornghashosted12researchprojectsfundedbytheMinistryofScienceandTechnology,anda
Special Issue of the Journal of Innovative Computing, Information and Control in 2011. His research
interestsincludecomputationalintelligence,theInternetofThings,networkfunctionvirtualization,
andtheInternet.
Hsu-YangKungreceivedhisPh.D.degreeinComputerScienceandInformationEngineeringfrom
National Cheng-Kung University, Taiwan, ROC. He is currently a distinguished professor in the
Department of Management Information Systems, National Pingtung University of Science and
Technology,Taiwan,ROC.Prof.Kunghaspublishedaround300academicpapersandreceived14te
best paper awards. He received the special talent award 8 times and the excellent team award 8
timesintheOpenSoftwareDevelopmentProjectPlanfromtheMinistryofScienceandTechnology.
HereceivedtheoutstandingperformanceandspecialcontributionsawardintheInnovativeTalents
PromotionProgramfortheCommunicationSoftwarefromtheMinistryofEducation. Hehasled
morethan100industrialandacademicresearchprojectsandowns26patents. Healsoservedasa
GuestEditorforthejournalsofAgronomy, Electronics, MathematicalProblemsinEngineering, Journal
ofElectricalandComputerEngineering, AdvancesinMultimedia, andIEEETechnologyandEngineering
Education. His research interests include IoT middleware, cloud computing, wireless and mobile
communications,andintelligentIoTapplicationsinprecisionagriculture.
Chi-Hua Chen is a distinguished professor at Fuzhou University and a chair professor at Dalian
MaritimeUniversity. HereceivedhisPh.D.degreefromNationalChiaoTungUniversity(NCTU)
in 2013. He has served as an assistant professor for the National Tsing Hua University, NCTU,
NationalTaipeiUniversity,andNationalKaohsiungUniversityofScienceandTechnology. Hehas
served as a research fellow for the Telecommunication Laboratories of Chunghwa Telecom Co.
Ltd. He has published over 230 academic articles and owns 50 patents. Some of these academic
articles were published in IEEE Internet of Things Journal, IEICE Transactions, etc. He has hosted
several projects that were funded by the National Natural Science Foundation of China, Fujian
Province,etc. HeservesasaneditorforseveralSCI-indexedjournals(e.g.,IEEEAccess,Biosensors,
EURASIP Journal on Wireless Communications and Networking, International Journal of Distributed
SensorNetworks, DiscreteDynamicsinNatureandSociety, MathematicalProblemsinEngineering, etc.).
vii
His recent research interests include the Internet of Things, machine learning and deep learning,
mobilecommunications,andintelligenttransportationsystems.
Feng-JangHwangisaSeniorLecturer(LevelC,AssociateProfessorshipequivalencyintheNorth
Americanacademicsystem)andtheLeadingPIoftheIndustrialOptimisationGroupattheSchool
ofMathematicalandPhysicalSciences, UniversityofTechnologySydney. HeearnedhisPh.D.in
InformationManagementfromtheNationalChiaoTungUniversityin2011. F.J.waselectedtothe
honorarymembershipofthePhi-Tau-PhiScholasticSocietytwice. Hewasthenomineeforthe2016
Australian Society for Operations Research Rising Star Award and the winner of the 2017 Albert
NelsonMarquisAchievementAward.Hisresearchinterestscentrearoundproductionmodellingand
scheduling, supplychainandlogisticsoptimisation, data-drivenoptimization, andcomputational
intelligence. F.J. has published in leading journals including Journal of Scheduling, Annals of
OperationsResearch,JournaloftheOperationalResearchSociety,Computers&OperationsResearch,Discrete
Optimization,EngineeringOptimization,IEEEAccess,InternationalJournalofSustainableTransportation,
etc. He has served as the guest editor for several international journals, including International
Journal of Distributed Sensor Network, EURASIP Journal on Wireless Communications and Networking,
Electronics,andAgronomy. Hehasbeeninvitedtogivemorethan30researchtalksandconference
presentations. His professional experience includes a logistics officer (ensign) at Taiwan Navy
headquarters, aresearchassistantattheInstituteofStatisticalScienceinAcademiaSinica, aswell
asapostdoctoralfellowatNationalTsingHuaUniversity,NationalChiaoTungUniversity,andthe
WarwickBusinessSchool.
viii
electronics
Editorial
Deep Learning Applications with Practical Measured
Results in Electronics Industries
Mong-FongHorng1,Hsu-YangKung2,Chi-HuaChen3,*andFeng-JangHwang4
1 DepartmentofElectronicEngineering,NationalKaohsiungUniversityofScienceandTechnology,
Kaohsiung80778,Taiwan;mfhorng@nkust.edu.tw
2 DepartmentofManagementInformationSystems,NationalPingtungUniversityofScienceandTechnology,
Pingtung91201,Taiwan;kung@mail.npust.edu.tw
3 CollegeofMathematicsandComputerScience,FuzhouUniversity,Fuzhou350100,China
4 SchoolofMathematicalandPhysicalSciences,UniversityofTechnologySydney,Ultimo,NSW2007,
Australia;Feng-Jang.Hwang@uts.edu.au
* Correspondence:chihua0826@gmail.com;Tel.:+86-18359183858
Received:11March2020;Accepted:12March2020;Published:19March2020
Abstract: ThiseditorialintroducestheSpecialIssue,entitled“DeepLearningApplicationswith
PracticalMeasuredResultsinElectronicsIndustries”,ofElectronics. Topicscoveredinthisissue
includefourmainparts:(I)environmentalinformationanalysesandpredictions,(II)unmannedaerial
vehicle(UAV)andobjecttrackingapplications,(III)measurementanddenoisingtechniques,and
(IV)recommendationsystemsandeducationsystems.Fourpapersonenvironmentalinformation
analysesandpredictionsareasfollows:(1)“AData-DrivenShort-TermForecastingModelforOffshore
WindSpeedPredictionBasedonComputationalIntelligence”byPanapakidisetal.;(2)“Multivariate
TemporalConvolutionalNetwork:ADeepNeuralNetworksApproachforMultivariateTimeSeries
Forecasting”byWanetal.;(3)“ModelingandAnalysisofAdaptiveTemperatureCompensation
forHumiditySensors”byXuetal.;(4)“AnImageCompressionMethodforVideoSurveillance
SysteminUndergroundMinesBasedonResidualNetworksandDiscreteWaveletTransform”by
Zhangetal. ThreepapersonUAVandobjecttrackingapplicationsareasfollows: (1)“Trajectory
PlanningAlgorithmofUAVBasedonSystemPositioningAccuracyConstraints”byZhouetal.;
(2)“OTL-Classifier: TowardsImagingProcessingforFutureUnmannedOverheadTransmission
LineMaintenance”byZhangetal.;(3)“ModelUpdateStrategiesaboutObjectTracking: AState
oftheArtReview”byWangetal. Fivepapersonmeasurementanddenoisingtechniquesareas
follows:(1)“CharacterizationandCorrectionoftheGeometricErrorsinUsingConfocalMicroscope
forExtendedTopographyMeasurement.PartI:Models,AlgorithmsDevelopmentandValidation”by
Wangetal.;(2)“CharacterizationandCorrectionoftheGeometricErrorsUsingaConfocalMicroscope
forExtendedTopographyMeasurement,PartII:ExperimentalStudyandUncertaintyEvaluation”by
Wangetal.;(3)“DeepTransferHSIClassificationMethodBasedonInformationMeasureandOptimal
NeighborhoodNoiseReduction”byLinetal.;(4)“QualityAssessmentofTireShearographyImages
viaEnsembleHybridFasterRegion-BasedConvNets”byChangetal.;(5)“High-ResolutionImage
InpaintingBasedonMulti-ScaleNeuralNetwork”bySunetal. Twopapersonrecommendation
systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for
PerformanceEvaluationofaRecommendingInterfacewithVariedRecommendationPositionand
IntensityBasedonEye-TrackingEquipmentDataProcessing”bySulikowskietal.and(2)“Generative
AdversarialNetworkBasedNeuralAudioCaptionModelforOralEvaluation”byZhangetal.
Keywords: deep learning; machine learning; supervised learning; unsupervised learning;
reinforcementlearning;optimizationtechniques
Electronics2020,9,501;doi:10.3390/electronics9030501 1 www.mdpi.com/journal/electronics