ebook img

De Gruyter Expositions in Mathematics Groups of Prime Power Order PDF

410 Pages·2018·2.458 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview De Gruyter Expositions in Mathematics Groups of Prime Power Order

YakovG.BerkovichandZvonimirJanko GroupsofPrimePowerOrder De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 65 Yakov G. Berkovich and Zvonimir Janko Groups of Prime Power Order | Volume 6 MathematicsSubjectClassification2010 20-02,20D15,20E07 Authors Prof.Dr.YakovG.Berkovich 18251Afula Israel [email protected] Prof.Dr.ZvonimirJanko Ruprecht-Karls-UniversitätHeidelberg MathematischesInstitut ImNeuenheimerFeld288 69120Heidelberg Germany [email protected] ISBN978-3-11-053097-1 e-ISBN(PDF)978-3-11-053314-9 e-ISBN(EPUB)978-3-11-053100-8 ISSN0938-6572 LibraryofCongressControlNumber:2018941447 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Typesetting:Dimler&Albroscheit,Müncheberg Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Contents Listofdefinitionsandnotations XIII | Preface XIX | §257 Nonabelianp-groupswithexactlyoneminimalnonabeliansubgroupof exponent>p|1 §258 2-groupswithsomeprescribedminimalnonabeliansubgroups 6 | §259 Nonabelianp-groups,p>2,allofwhoseminimalnonabeliansubgroups areisomorphictoM 13 p3 | §260 p-groupswithmanymodularsubgroupsMpn |15 §261 Nonabelianp-groupsofexponent>pwithasmallnumberofmaximal abeliansubgroupsofexponent>p|18 §262 Nonabelianp-groupsallofwhosesubgroupsarepowerful|24 §263 Nonabelian2-groupsGwithCG(x)≤HforallH∈Γ1andx ∈H−Z(G)|25 §264 Nonabelian2-groupsofexponent≥16allofwhoseminimalnonabelian subgroups,exceptone,haveorder8 26 | §265 p-groupsallofwhoseregularsubgroupsareeitherabsolutelyregularorof exponentp|29 §266 Nonabelianp-groupsinwhichanytwodistinctminimalnonabelian subgroupswithanontrivialintersectionarenon-isomorphic 33 | §267 Thompson’sA×Blemma|35 §268 Onautomorphismsofsomep-groups|36 §269 Oncriticalsubgroupsofp-groups|47 §270 p-groupsallofwhoseAk-subgroupsforafixedk >1aremetacyclic|50 §271 TwotheoremsofBlackburn 55 | https://doi.org/10.1515/9783110533149-202 VI | Contents §272 Nonabelianp-groupsallofwhosemaximalabeliansubgroups,exceptone, areeithercyclicorelementaryabelian 57 | §273 Nonabelianp-groupsallofwhosenoncyclicmaximalabeliansubgroupsare elementaryabelian 58 | §274 Non-Dedekindianp-groupsinwhichanytwononnormalsubgroups normalizeeachother 59 | §275 Nonabelianp-groupswithexactlypnormalclosuresofminimalnonabelian subgroups 61 | §276 2-groupsallofwhosemaximalsubgroups,exceptone,are Dedekindian 63 | §277 p-groupswithexactlytwoconjugateclassesofnonnormalmaximalcyclic subgroups 67 | §278 Nonmetacyclicp-groupsallofwhosemaximalmetacyclicsubgroupshave indexp|68 §279 Subgroupcharacterizationofsomep-groupsofmaximalclassandcloseto them 70 | §280 Nonabelianp-groupsallofwhosemaximalsubgroups,exceptone,are minimalnonmetacyclic 73 | §281 Nonabelianp-groupsinwhichanytwodistinctminimalnonabelian subgroupshaveacyclicintersection 80 | §282 p-groupswithlargenormalclosuresofnonnormalsubgroups|83 §283 Nonabelianp-groupswithmanycycliccentralizers|86 §284 Nonabelianp-groups,p>2,ofexponent>p2allofwhoseminimal nonabeliansubgroupsareoforderp3|87 §285 AgeneralizationofLemma57.1 88 | §286 Groupsofexponentpwithmanynormalsubgroups|90 VII Contents | §287 p-groupsinwhichtheintersectionofanytwononincidentsubgroupsis normal 92 | §288 Nonabelianp-groupsinwhichforeveryminimalnonabelianM<Gand x ∈G−M,wehaveCM(x)=Z(M)|97 §289 Non-Dedekindianp-groupsallofwhosemaximalnonnormalsubgroupsare conjugate 98 | §290 Non-Dedekindianp-groupsGwithanoncyclicpropersubgroupHsuchthat eachsubgroupwhichisnonincidentwithHisnormalinG|99 §291 Nonabelianp-groupswhicharegeneratedbyafixedmaximalcyclic subgroupandanyminimalnonabeliansubgroup 100 | §292 Nonabelianp-groupsgeneratedbyanytwonon-conjugateminimal nonabeliansubgroups 101 | §293 Exercises 102 | §294 p-groups,p>2,whoseFrattinisubgroupisnonabelianmetacyclic|174 §295 Anyirregularp-groupcontainsanon-isolatedmaximalregular subgroup 176 | §296 Non-Dedekindianp-groupsallofwhosenonnormalmaximalcyclic subgroupsareC-equivalent 178 | §297 On2-groupswithoutelementaryabeliansubgroupoforder8 180 | §298 Non-Dedekindianp-groupsallofwhosesubgroupsoforder≤ps(s≥1 fixed)arenormal 182 | §299 Onp󸀠-automorphismsofp-groups|184 §300 Onp-groupsallofwhosemaximalsubgroupsofexponentparenormaland haveorderpp|185 §301 p-groupsofexponent>pcontaining<pmaximalabeliansubgroupsof exponent>p|188 §302 AlternateproofofTheorem109.1 190 | VIII | Contents §303 Nonabelianp-groupsoforder>p4allofwhosesubgroupsoforderp4are isomorphic 192 | §304 Non-Dedekindianp-groupsinwhicheachnonnormalsubgrouphasacyclic complementinitsnormalizer 196 | §305 Nonabelianp-groupsGallofwhoseminimalnonabeliansubgroupsM satisfyZ(M)≤Z(G)|198 §306 Nonabelian2-groupsallofwhosemaximalsubgroups,exceptone,are quasi-Hamiltonianorabelian 200 | §307 Nonabelianp-groups,p>2,allofwhosemaximalsubgroups,exceptone, arequasi-Hamiltonianorabelian 205 | §308 Nonabelianp-groupswithanelementaryabelianintersectionofanytwo distinctmaximalabeliansubgroups 210 | §309 Minimalnon-p-centralp-groups|211 §310 Nonabelianp-groupsinwhicheachelementinanyminimalnonabelian subgroupishalf-central 213 | §311 Nonabelianp-groupsGofexponentpinwhichC (x)=⟨x⟩Gforall G noncentralx ∈G|214 §312 Nonabelian2-groupsallofwhoseminimalnonabeliansubgroups, exceptone,areisomorphicto M2(2,2)=⟨a,b|a4 =b4 =1, ab =a−1⟩|215 §313 Non-Dedekindian2-groupsallofwhosemaximalDedekindiansubgroups haveindex2 223 | §314 TheoremofGlauberman–Mazzaonp-groupswithanonnormalmaximal elementaryabeliansubgroupoforderp2|224 §315 p-groupswithsomenon-p-centralmaximalsubgroups|227 §316 Nonabelianp-groups,p>2,ofexponent>p3allofwhoseminimal nonabeliansubgroups,exceptone,haveorderp3|228 IX Contents | §317 Nonabelianp-groups,p>2,allofwhoseminimalnonabeliansubgroups areisomorphictoMp(2,2)|231 §318 Nonabelianp-groups,p>2,ofexponent>p2allofwhoseminimal nonabeliansubgroups,exceptone,areisomorphictoMp(2,2)|233 §319 Anewcharacterizationofp-centralp-groups|236 §320 Nonabelianp-groupswithexactlyonenon-p-centralminimalnonabelian subgroup 237 | §321 Nonabelianp-groupsGinwhicheachelementinG−Φ(G)is half-central 239 | §322 Nonabelianp-groupsGsuchthatC (H)=Z(G)foranynonabelian G H≤G|240 §323 Nonabelianp-groupsthatarenotgeneratedbyitsnoncyclicabelian subgroups 241 | §324 Aseparationofmetacyclicandnonmetacyclicminimalnonabelian subgroupsinnonabelianp-groups|242 §325 p-groupswhicharenotgeneratedbytheirnonnormalsubgroups,2|243 §326 Nonabelianp-groupsallofwhosemaximalabeliansubgroupsare normal 244 | A.110 Non-absolutelyregularp-groupsallofwhosemaximalabsolutelyregular subgroupshaveindexp|245 A.111 Nonabelianp-groupsofexponent>pallofwhosemaximalabelian subgroupsofexponent>pareisolated|247 A.112 Metacyclicp-groupswithanabelianmaximalsubgroup|249 A.113 Nonabelianp-groupswithacyclicintersectionofanytwodistinctmaximal abeliansubgroups 251 | A.114 AnanalogofThompson’sdihedrallemma 253 | A.115 SomeresultsfromThompson’papersandtheOddOrderpaper 255 | X | Contents A.116 Onnormalsubgroupsofap-group|257 A.117 TheoremofMann 263 | A.118 Onp-groupswithgivenisolatedsubgroups|264 A.119 Two-generatornormalsubgroupsofap-groupGthatcontainedinΦ(G)are metacyclic 269 | A.120 Alternateproofsofsomecountingtheorems 270 | A.121 Onp-groupsofmaximalclass|275 A.122 Criteriaofregularity 283 | A.123 Nonabelianp-groupsinwhichanytwononincidentsubgroupshavean abelianintersection 285 | A.124 Characterizationsofthep-groupsofmaximalclassandtheprimary ECF-groups 287 | A.125 Nonabelianp-groupsallofwhosepropernonabeliansubgroupshave exponentp|289 A.126 Onp-groupswithabelianautomorphismgroups|291 A.127 AlternateproofofProposition1.23 293 | A.128 AlternateproofofthetheoremofPassmanonp-groupsallofwhose subgroupsoforder≤ps(s≥1isfixed)arenormal|294 A.129 AlternateproofsofTheorems309.1and309.2onminimalnon-p-central p-groups|297 A.130 Non-Dedekindianp-groupsallofwhosenonnormalmaximalcyclic subgroupsareconjugate 299 | A.131 Acharacterizationofsome3-groupsofmaximalclass 301 | A.132 Alternateapproachtoclassificationofminimalnon-p-central p-groups|303

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.