YakovG.BerkovichandZvonimirJanko GroupsofPrimePowerOrder De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 65 Yakov G. Berkovich and Zvonimir Janko Groups of Prime Power Order | Volume 6 MathematicsSubjectClassification2010 20-02,20D15,20E07 Authors Prof.Dr.YakovG.Berkovich 18251Afula Israel [email protected] Prof.Dr.ZvonimirJanko Ruprecht-Karls-UniversitätHeidelberg MathematischesInstitut ImNeuenheimerFeld288 69120Heidelberg Germany [email protected] ISBN978-3-11-053097-1 e-ISBN(PDF)978-3-11-053314-9 e-ISBN(EPUB)978-3-11-053100-8 ISSN0938-6572 LibraryofCongressControlNumber:2018941447 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Typesetting:Dimler&Albroscheit,Müncheberg Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Contents Listofdefinitionsandnotations XIII | Preface XIX | §257 Nonabelianp-groupswithexactlyoneminimalnonabeliansubgroupof exponent>p|1 §258 2-groupswithsomeprescribedminimalnonabeliansubgroups 6 | §259 Nonabelianp-groups,p>2,allofwhoseminimalnonabeliansubgroups areisomorphictoM 13 p3 | §260 p-groupswithmanymodularsubgroupsMpn |15 §261 Nonabelianp-groupsofexponent>pwithasmallnumberofmaximal abeliansubgroupsofexponent>p|18 §262 Nonabelianp-groupsallofwhosesubgroupsarepowerful|24 §263 Nonabelian2-groupsGwithCG(x)≤HforallH∈Γ1andx ∈H−Z(G)|25 §264 Nonabelian2-groupsofexponent≥16allofwhoseminimalnonabelian subgroups,exceptone,haveorder8 26 | §265 p-groupsallofwhoseregularsubgroupsareeitherabsolutelyregularorof exponentp|29 §266 Nonabelianp-groupsinwhichanytwodistinctminimalnonabelian subgroupswithanontrivialintersectionarenon-isomorphic 33 | §267 Thompson’sA×Blemma|35 §268 Onautomorphismsofsomep-groups|36 §269 Oncriticalsubgroupsofp-groups|47 §270 p-groupsallofwhoseAk-subgroupsforafixedk >1aremetacyclic|50 §271 TwotheoremsofBlackburn 55 | https://doi.org/10.1515/9783110533149-202 VI | Contents §272 Nonabelianp-groupsallofwhosemaximalabeliansubgroups,exceptone, areeithercyclicorelementaryabelian 57 | §273 Nonabelianp-groupsallofwhosenoncyclicmaximalabeliansubgroupsare elementaryabelian 58 | §274 Non-Dedekindianp-groupsinwhichanytwononnormalsubgroups normalizeeachother 59 | §275 Nonabelianp-groupswithexactlypnormalclosuresofminimalnonabelian subgroups 61 | §276 2-groupsallofwhosemaximalsubgroups,exceptone,are Dedekindian 63 | §277 p-groupswithexactlytwoconjugateclassesofnonnormalmaximalcyclic subgroups 67 | §278 Nonmetacyclicp-groupsallofwhosemaximalmetacyclicsubgroupshave indexp|68 §279 Subgroupcharacterizationofsomep-groupsofmaximalclassandcloseto them 70 | §280 Nonabelianp-groupsallofwhosemaximalsubgroups,exceptone,are minimalnonmetacyclic 73 | §281 Nonabelianp-groupsinwhichanytwodistinctminimalnonabelian subgroupshaveacyclicintersection 80 | §282 p-groupswithlargenormalclosuresofnonnormalsubgroups|83 §283 Nonabelianp-groupswithmanycycliccentralizers|86 §284 Nonabelianp-groups,p>2,ofexponent>p2allofwhoseminimal nonabeliansubgroupsareoforderp3|87 §285 AgeneralizationofLemma57.1 88 | §286 Groupsofexponentpwithmanynormalsubgroups|90 VII Contents | §287 p-groupsinwhichtheintersectionofanytwononincidentsubgroupsis normal 92 | §288 Nonabelianp-groupsinwhichforeveryminimalnonabelianM<Gand x ∈G−M,wehaveCM(x)=Z(M)|97 §289 Non-Dedekindianp-groupsallofwhosemaximalnonnormalsubgroupsare conjugate 98 | §290 Non-Dedekindianp-groupsGwithanoncyclicpropersubgroupHsuchthat eachsubgroupwhichisnonincidentwithHisnormalinG|99 §291 Nonabelianp-groupswhicharegeneratedbyafixedmaximalcyclic subgroupandanyminimalnonabeliansubgroup 100 | §292 Nonabelianp-groupsgeneratedbyanytwonon-conjugateminimal nonabeliansubgroups 101 | §293 Exercises 102 | §294 p-groups,p>2,whoseFrattinisubgroupisnonabelianmetacyclic|174 §295 Anyirregularp-groupcontainsanon-isolatedmaximalregular subgroup 176 | §296 Non-Dedekindianp-groupsallofwhosenonnormalmaximalcyclic subgroupsareC-equivalent 178 | §297 On2-groupswithoutelementaryabeliansubgroupoforder8 180 | §298 Non-Dedekindianp-groupsallofwhosesubgroupsoforder≤ps(s≥1 fixed)arenormal 182 | §299 Onp-automorphismsofp-groups|184 §300 Onp-groupsallofwhosemaximalsubgroupsofexponentparenormaland haveorderpp|185 §301 p-groupsofexponent>pcontaining<pmaximalabeliansubgroupsof exponent>p|188 §302 AlternateproofofTheorem109.1 190 | VIII | Contents §303 Nonabelianp-groupsoforder>p4allofwhosesubgroupsoforderp4are isomorphic 192 | §304 Non-Dedekindianp-groupsinwhicheachnonnormalsubgrouphasacyclic complementinitsnormalizer 196 | §305 Nonabelianp-groupsGallofwhoseminimalnonabeliansubgroupsM satisfyZ(M)≤Z(G)|198 §306 Nonabelian2-groupsallofwhosemaximalsubgroups,exceptone,are quasi-Hamiltonianorabelian 200 | §307 Nonabelianp-groups,p>2,allofwhosemaximalsubgroups,exceptone, arequasi-Hamiltonianorabelian 205 | §308 Nonabelianp-groupswithanelementaryabelianintersectionofanytwo distinctmaximalabeliansubgroups 210 | §309 Minimalnon-p-centralp-groups|211 §310 Nonabelianp-groupsinwhicheachelementinanyminimalnonabelian subgroupishalf-central 213 | §311 Nonabelianp-groupsGofexponentpinwhichC (x)=⟨x⟩Gforall G noncentralx ∈G|214 §312 Nonabelian2-groupsallofwhoseminimalnonabeliansubgroups, exceptone,areisomorphicto M2(2,2)=⟨a,b|a4 =b4 =1, ab =a−1⟩|215 §313 Non-Dedekindian2-groupsallofwhosemaximalDedekindiansubgroups haveindex2 223 | §314 TheoremofGlauberman–Mazzaonp-groupswithanonnormalmaximal elementaryabeliansubgroupoforderp2|224 §315 p-groupswithsomenon-p-centralmaximalsubgroups|227 §316 Nonabelianp-groups,p>2,ofexponent>p3allofwhoseminimal nonabeliansubgroups,exceptone,haveorderp3|228 IX Contents | §317 Nonabelianp-groups,p>2,allofwhoseminimalnonabeliansubgroups areisomorphictoMp(2,2)|231 §318 Nonabelianp-groups,p>2,ofexponent>p2allofwhoseminimal nonabeliansubgroups,exceptone,areisomorphictoMp(2,2)|233 §319 Anewcharacterizationofp-centralp-groups|236 §320 Nonabelianp-groupswithexactlyonenon-p-centralminimalnonabelian subgroup 237 | §321 Nonabelianp-groupsGinwhicheachelementinG−Φ(G)is half-central 239 | §322 Nonabelianp-groupsGsuchthatC (H)=Z(G)foranynonabelian G H≤G|240 §323 Nonabelianp-groupsthatarenotgeneratedbyitsnoncyclicabelian subgroups 241 | §324 Aseparationofmetacyclicandnonmetacyclicminimalnonabelian subgroupsinnonabelianp-groups|242 §325 p-groupswhicharenotgeneratedbytheirnonnormalsubgroups,2|243 §326 Nonabelianp-groupsallofwhosemaximalabeliansubgroupsare normal 244 | A.110 Non-absolutelyregularp-groupsallofwhosemaximalabsolutelyregular subgroupshaveindexp|245 A.111 Nonabelianp-groupsofexponent>pallofwhosemaximalabelian subgroupsofexponent>pareisolated|247 A.112 Metacyclicp-groupswithanabelianmaximalsubgroup|249 A.113 Nonabelianp-groupswithacyclicintersectionofanytwodistinctmaximal abeliansubgroups 251 | A.114 AnanalogofThompson’sdihedrallemma 253 | A.115 SomeresultsfromThompson’papersandtheOddOrderpaper 255 | X | Contents A.116 Onnormalsubgroupsofap-group|257 A.117 TheoremofMann 263 | A.118 Onp-groupswithgivenisolatedsubgroups|264 A.119 Two-generatornormalsubgroupsofap-groupGthatcontainedinΦ(G)are metacyclic 269 | A.120 Alternateproofsofsomecountingtheorems 270 | A.121 Onp-groupsofmaximalclass|275 A.122 Criteriaofregularity 283 | A.123 Nonabelianp-groupsinwhichanytwononincidentsubgroupshavean abelianintersection 285 | A.124 Characterizationsofthep-groupsofmaximalclassandtheprimary ECF-groups 287 | A.125 Nonabelianp-groupsallofwhosepropernonabeliansubgroupshave exponentp|289 A.126 Onp-groupswithabelianautomorphismgroups|291 A.127 AlternateproofofProposition1.23 293 | A.128 AlternateproofofthetheoremofPassmanonp-groupsallofwhose subgroupsoforder≤ps(s≥1isfixed)arenormal|294 A.129 AlternateproofsofTheorems309.1and309.2onminimalnon-p-central p-groups|297 A.130 Non-Dedekindianp-groupsallofwhosenonnormalmaximalcyclic subgroupsareconjugate 299 | A.131 Acharacterizationofsome3-groupsofmaximalclass 301 | A.132 Alternateapproachtoclassificationofminimalnon-p-central p-groups|303