Table Of ContentPython For Data Science Cheat Sheet Create Your Model Evaluate Your Model’s Performance
Scikit-Learn Supervised Learning Estimators Classification Metrics
Learn Python for data science Interactively at www.DataCamp.com Linear Regression Accuracy Score
Estimator score method
>>> from sklearn.linear_model import LinearRegression >>> knn.score(X_test, y_test)
>>> lr = LinearRegression(normalize=True) >>> from sklearn.metrics import accuracy_score Metric scoring functions
Support Vector Machines (SVM) >>> accuracy_score(y_test, y_pred)
Scikit-learn Classification Report
>>> from sklearn.svm import SVC
Scikit-learn is an open source Python library that > >N>a ivsev cB a=y eSsV C(kernel='linear') >>>>>> pfrroimn ts(kclleaarsns.imfiectraitciso nim_proerpto crlta(sys_itfiecsatt,io ny__rperpeodr)t)Panredc sisuiopnp,o rretcall, f1-score
implements a range of machine learning, Confusion Matrix
>>> from sklearn.naive_bayes import GaussianNB
preprocessing, cross-validation and visualization >>> gnb = GaussianNB() >>> from sklearn.metrics import confusion_matrix
>>> print(confusion_matrix(y_test, y_pred))
algorithms using a unified interface. KNN
Regression Metrics
>>> from sklearn import neighbors
A Basic Example
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5) Mean Absolute Error
>>> from sklearn import neighbors, datasets, preprocessing Unsupervised Learning Estimators
>>> from sklearn.model_selection import train_test_split >>> from sklearn.metrics import mean_absolute_error
>>> from sklearn.metrics import accuracy_score Principal Component Analysis (PCA) >>> y_true = [3, -0.5, 2]
>>> mean_absolute_error(y_true, y_pred)
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target >>> from sklearn.decomposition import PCA Mean Squared Error
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33) >>> pca = PCA(n_components=0.95) >>> from sklearn.metrics import mean_squared_error
>>> scaler = preprocessing.StandardScaler().fit(X_train) K Means >>> mean_squared_error(y_test, y_pred)
>>> X_train = scaler.transform(X_train) R² Score
>>> from sklearn.cluster import KMeans
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5) >>> k_means = KMeans(n_clusters=3, random_state=0) >>> from sklearn.metrics import r2_score
>>> r2_score(y_true, y_pred)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test) Model Fitting Clustering Metrics
>>> accuracy_score(y_test, y_pred)
Adjusted Rand Index
Supervised learning
Loading The Data Also see NumPy & Pandas Fit the model to the data >>> from sklearn.metrics import adjusted_rand_score
>>> lr.fit(X, y) >>> adjusted_rand_score(y_true, y_pred)
>>> knn.fit(X_train, y_train) Homogeneity
Your data needs to be numeric and stored as NumPy arrays or SciPy sparse >>> svc.fit(X_train, y_train)
matrices. Other types that are convertible to numeric arrays, such as Pandas Unsupervised Learning >>> from sklearn.metrics import homogeneity_score
Fit the model to the data >>> homogeneity_score(y_true, y_pred)
DataFrame, are also acceptable. >>> k_means.fit(X_train) V-measure
>>> pca_model = pca.fit_transform(X_train) Fit to data, then transform it
>>> import numpy as np >>> from sklearn.metrics import v_measure_score
>>> X = np.random.random((10,5)) >>> metrics.v_measure_score(y_true, y_pred)
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F']) Prediction
>>> X[X < 0.7] = 0 Cross-Validation
Supervised Estimators >>> from sklearn.cross_validation import cross_val_score
Training And Test Data Predict labels >>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> y_pred = svc.predict(np.random.random((2,5)))
Predict labels >>> print(cross_val_score(lr, X, y, cv=2))
>>> y_pred = lr.predict(X_test)
>>> from sklearn.model_selection import train_test_split >>> y_pred = knn.predict_proba(X_test) Estimate probability of a label Tune Your Model
>>> X_train, X_test, y_train, y_test = train_test_split(X, Unsupervised Estimators
y, Predict labels in clustering algos Grid Search
random_state=0) >>> y_pred = k_means.predict(X_test)
>>> from sklearn.grid_search import GridSearchCV
Preprocessing The Data >>> params = {"n_neighbors": np.arange(1,3),
"metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn,
Standardization Encoding Categorical Features
param_grid=params)
>>> grid.fit(X_train, y_train)
>>> from sklearn.preprocessing import StandardScaler >>> from sklearn.preprocessing import LabelEncoder >>> print(grid.best_score_)
>>> scaler = StandardScaler().fit(X_train) >>> enc = LabelEncoder() >>> print(grid.best_estimator_.n_neighbors)
>>> standardized_X = scaler.transform(X_train) >>> y = enc.fit_transform(y) Randomized Parameter Optimization
>>> standardized_X_test = scaler.transform(X_test)
Normalization Imputing Missing Values >>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5),
>>> from sklearn.preprocessing import Normalizer >>> from sklearn.preprocessing import Imputer > > > r s e a r c h = R"awnediogmhitzse"d:S e[a"rucnhiCfVo(rems"t,i m"adtiosrt=aknncne," ]}
>>> scaler = Normalizer().fit(X_train) >>> imp = Imputer(missing_values=0, strategy='mean', axis=0) param_distributions=params,
>>> normalized_X = scaler.transform(X_train) >>> imp.fit_transform(X_train) cv=4,
>>> normalized_X_test = scaler.transform(X_test) n_iter=8,
Binarization Generating Polynomial Features random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)
>>> from sklearn.preprocessing import Binarizer >>> from sklearn.preprocessing import PolynomialFeatures
>>> binarizer = Binarizer(threshold=0.0).fit(X) >>> poly = PolynomialFeatures(5) DataCamp
>>> binary_X = binarizer.transform(X) >>> poly.fit_transform(X) Learn Python for Data Science Interactively