Data Warehousing and Data Mining for Telecommunications Chapter7 Screenshotsreprintedwithpermissionfrom MicrosoftCorporation,One Mi- crosoftWay,Redmond, WA98052-6399 Chapter8 Screenshotsof PowerPlayreprintedwithpermissionfrom Cognos Corpora- tion,OneBurlington BusinessCenter,67So.Bedford Street,Suite200W,Burlington, MA01803-5164,Tel:1-800-365-3968,http://www.cognos.com Chapter9 Screenshotsreprintedwithpermissionfrom SPSS Inc.,444N. Michigan Avenue,Chicago,IL60611-3962,Tel:312-329-2400,Fax:312-329-3690, http://www.spss.com Chapter10 Screenshotsof ModelMAX reprintedwithpermission from AdvancedSoft- wareApplications. ModelMAX isaregisteredtrademarkof AdvancedSoftware Applica- tions,333BaldwinRoad, Pittsburgh,PA15205,Tel: 412-429-1003,Fax: 412-429-0709,e-mail:[email protected] Chapter11 MapInfo Professional(cid:153)screenshotsprovidedbyMapInfo Corporation. ©1985–1997MapInfoCorporation. Allrightsreserved.MapMarkerisaregisteredtrade- markandMapInfoProfessional andStreetWorksaretrademarksofMapInfo Corpora- tion,OneGlobalView,Troy,New York12180-8399,Tel: 518-285-6000,Fax: 518-285-6060,http://www.mapinfo.com MapInfoCorporationmakesnoguaranteeor warrantywithregardtotheaccuracyofin- formation suppliedhereinandacceptsno liabilityfor lossor damageincurredasaresult of any relianceontheinformation. AppendixA Screenshotsreprintedwithpermission from CNET-FranceTelecom and SLP InfoWare Inc. AppendixB Screenshotsreprintedwithpermissionfrom SeagateSoftware, 1095WestPenderStreet,Vancouver,BC, Canada V6E2M6,Tel:604–681–3435, Fax:604–681–2934,http://www.seagatesoftware.com. SeagateandSeagateTechnology areregisteredtrademarksof SeagateTechnology, Inc. SeagateSoftware isatrademarkof SeagateTechnology, Inc.SeagateSoftware Information ManagementGroup, Seagate CrystalReports,SeagateCrystalInfo,andSeagateHolosaretrademarksor registered trademarksof SeagateTechnology, Inc.,or one ofitssubsidiaries.Allothertrademarks and registeredtrademarksarepropertyof theirrespectiveowners. For a completelistingof theArtechHouseComputerScience library, turn tothebackof thisbook. Data Warehousing and Data Mining for Telecommunications Rob Mattison Artech House Boston • London Libraryof CongressCataloging-in-Publication Data Mattison, Rob. Data warehousinganddataminingfor telecommunications/Rob Mattison. p. cm.—(Artech ComputerScienceLibrary) Includesbibliographicalreferencesandindex. ISBN0-89006-952-2(alk. paper) 1. Telecommunications—Management. 2.DatabaseManagement. 3.Data mining I.Title. II.Series HE7661.M38 1997 384’.0285’574—dc21 97-22863 CIP British LibraryCataloguingin PublicationData Mattison, Rob M. Data warehousingand dataminingfor telecommunications—(Artech Computer ScienceLibrary) 1.Decision supportsystems 2.Telecommunications 3.Digitalcommunications I.Title 384’.0285 ISBN0-89006-952-2 CoverandtextdesignbyDarrell Judd.Illustrationsby BrigitteKilger-Mattison. CoverimagesfromSeagate SoftwareandSLP InfoWare. © 1997ARTECH HOUSE,INC. 685 Canton Street Norwood, MA02062 Allrightsreserved. Printedandbound intheUnitedStatesof America.Nopartof this book maybereproducedor utilizedinany form or byany means,electronic or mechani- cal,includingphotocopying,recording,orbyanyinformation storageand retrievalsys- tem,withoutpermission inwriting from thepublisher. Alltermsmentionedinthisbook thatareknown to betrademarksor servicemarkshave beenappropriatelycapitalized.ArtechHouse cannot attestto theaccuracyof thisinforma- tion.Useof aterminthisbook shouldnotberegardedasaffecting thevalidityof any trademarkor servicemark. InternationalStandardBookNumber: 0-89006-952-2 LibraryofCongressCatalog CardNumber:97-22863 10987654321 I would like to dedicate thisbookto my darlinggrandchildren, JonathanYesulis,RaquelKuykendall,andAnthonyandNicoleCirrincione, and to allof theotherchildrenwhowillbe leftto pick upthepieces afterwemoveon. Contents Foreword xiii 1.6 Future directions 8 1.7 Telecommunicationsand technologicalinnovation 9 Preface xvii 1.7.1 Peg counts 9 1.7.2 Business drives technological innovation 9 Chapter 1 1.8 The threestrategicoptions 10 Everything’supto date in 1.9 Customerintimacy—from“network KansasCity 1 isking”to “customer isking” 10 1.1 The currentindustrycomposition 3 1.9.1 Marketingas the drivingforce 11 1.2 Whyistelecommunicationsso 1.10 Operational efficiency—beingthe BIG? 4 low-costproviderof choice 11 1.3 Telecommunications:themajor 1.11 Technicalproficiency—beingthe drivingeconomic forceof the21st bestatwhatyou do 12 century 5 1.12 Conclusion 12 1.4 Knowledge managementenablement— thebiggestfactorof all 6 Chapter 2 1.5 The ultimateenvironment 7 1.5.1 Failedexcursionsintothe Whywarehousingand new frontiers 7 how to get started 13 vii viii Data WarehousingandDataMiningforTelecommunications 2.1 Background of datawarehousing 14 3.1.1 Knowledgemanagement 2.1.1 Thehistoryofthe data principles 27 warehousing phenomenon 14 3.1.2 Theorganizational footprintand 2.1.2 Data warehousing—in a whatittells usaboutknowledge nutshell 16 transformationprocesses 29 2.1.3 Whatis a datawarehouse? 17 3.2 Efficiencyoptimization—optimize 2.2 Datamining 18 thesilo or optimizethewhole 32 2.2.1 Whyshould oneseriouslyconsider 3.2.1 Whichtypeofwarehouseisbetter, using theseapproaches? 20 or which is the right one? 34 3.2.2 Thewarehouse alternative 37 2.3 Whyaretheseapproachesso 3.2.3 A third alternative 37 exceptionallyvaluableto telecommunicationsfirms? 20 3.3 The corporate globalwarehouse 2.3.1 Data intensity 20 model 38 2.3.2 Analysis dependency 21 3.3.1 Developinga trulyusable global 2.3.3 Competitive climate 21 architecturemodel 40 2.3.4 Technologicalchange at a very 3.3.2 An alternative foundation: highrate 21 the valuechain 42 2.3.5 Historicalprecedent 22 3.3.3 Thekeytovaluechain delivery 45 2.4 Organizingtheprocess 22 2.4.1 Aninventoryofthe existing 3.4 Overallstrategyfor development computer systemsandother (one pieceatatime,fitting intothe technologicalinfrastructure 22 overallarchitecture) 45 2.4.2 A roadmapand an approachfor 3.4.1 Thegrowing warehouse how todeploy data warehouses example 47 in general 23 3.4.2 Ownership ofknowledge 2.4.3 A roadmapforunderstandinghow issues 49 todiagnose anddevelop a plan for identifyingthe bestthings toput Chapter 4 intothe warehouse and which data mining toolstouse 23 The telecommunications valuechain 51 4.1 The knowledgeroadmap Chapter 3 solution 52 Theknowledge management viewof 4.2 Stepsintheprocessof deriving a businessandwarehousing 25 business’valuechain 52 3.1 The knowledgemanagement 4.3 Telecommunicationsfunctions revolution 26 and systems 53 Contents ix 4.3.1 Creation (newproduct develop- 4.5.1 Aligningthevaluechain and mentand exploitation) 54 the organization—large 4.3.2 Acquisition(acquiringthe “right” megacorporation 68 todobusiness) 54 4.5.2 Aligningthevaluechain with the 4.3.3 Networkinfrastructureplanning informationsystems 71 and development(creatingthe 4.5.3 Kingpin systems:the beginningof “phone system”) 55 computersystemsalignment 72 4.3.4 Networkinfrastructure 4.5.4 Alignment problemsand their maintenance(maintaining the symptoms 74 “phone system”) 56 4.5.5 Datawarehousing as an 4.3.5 Provisioning (settingup customer alternative 76 services) 57 4.5.6 Datawarehousing as a migration 4.3.6 Activation(activatingcustomer path 77 services) 57 4.5.7 Thefully aligned model— 4.3.7 Service orderprocessing 58 a summary 77 4.3.8 Billing (tracking serviceand invoicing thecustomer) 58 Chapter 5 4.3.9 Marketing(identifyingprospects/ channels,advertising) 59 Building the warehouse— 4.3.10 Customerservice(keepingthe one step ata time 79 customer happy) 59 5.1 Challengestoinfrastructure 4.3.11 Sales (establishingandmaintaining design 80 customer relationships) 61 5.2 The functional componentsof a 4.3.12 Financeand accounting 61 warehouse environment 84 4.3.13 Credit management 61 5.2.1 Acquisition 85 4.3.14 Operations (networkand 5.2.2 Storage 87 business) 62 5.2.3 Access 88 4.3.15 A comprehensivevaluechain 62 5.2.4 Theoperational 4.4 Organizational structureand the infrastructure 89 valuechain 63 5.2.5 Thephysical infrastructure 89 4.4.1 Typical organizational structure: 5.3 The step-by-step, cost-justified medium-sized cellular firm 64 approach 89 4.4.2 Typical organizational structure: 5.3.1 Whatis a valueproposition? 90 large telecommunications 5.3.2 Gatheringvalue propositions 90 firms 66 5.4 Howdoyoubuilda warehouse? 92 4.5 Allocatingthebusinessunitsto the valuechainand theknowledge managementprocess 66 x DataWarehousingandDataMiningforTelecommunications Chapter 6 7.1 Operational efficiency—an overview 109 Valuepropositions in 7.2 Salesmonitoringandcontrol 110 telecommunications 95 7.3 Auniversalproblem 111 6.1 Miningtoolsandvaluedelivery 96 7.4 UsingMicrosoftQueryandExcelto 6.1.1 Operationalmonitoring and do salestracking 111 control 96 7.4.1 Thesales database 112 6.1.2 Discoveryand exploration 97 7.5 Managing morecomplicated 6.2 Value propositions byfunctional needs 115 area 98 7.6 Alternativemethodsof 6.2.1 Marketingvaluepropositions accessingdata 115 (historical/cross-silo/ discovery) 99 6.2.2 Credit valuepropositions 99 Chapter 8 6.2.3 Customerservicevalue Salesand productmanagement: propositions—(real-timeand advanced operationalmonitoring historical/cross-silo/ usingCOGNOSPowerPlay 117 operationalmonitoring) 100 8.1 Monitoring complexbusiness 6.2.4 Sales valuepropositions 101 organizations 118 6.2.5 Networkplanningvalue 8.1.1 Determining the differentlevelsat propositions 101 whichtoreport 119 6.2.6 Networkmaintenance value 8.1.2 Preparing the data foruse 121 propositions 103 6.2.7 Creation 103 8.2 Exploringsalesandproduct 6.2.8 Activationandprovisioning and performance 121 serviceorderprocessing 104 8.3 Additional PowerPlayfeatures 124 6.2.9 Billing (historical/single-silo/ 8.3.1 Alerts 125 discoveryand monitoring) 104 8.3.2 Schedulers 126 6.2.10 Operations 104 8.4 Summary 127 6.3 Conclusions 105 6.3.1 Knowledge management Chapter 9 approach 105 Customer intimacy: an introduction usingSPSS 129 Chapter 7 9.1 An introduction to analytical Simplesalesanalysis: mining 130 anintroduction to operational moni- 9.2 Statisticalanalysis—optionsand toring usingMicrosoftQuery 107 objectives 131 9.3 Descriptiveapproaches 133 Contents xi 9.4 Inferentialapproaches—regression 11.2 Using geographicalinformationto analysis 137 solvetelecommunications 9.5 Conclusionsonstatistical problems 158 analysis 140 11.3 Cellsite analysiswithMapInfo Professional 159 11.4 Marketanalysiscapabilities 162 Chapter 10 11.5 Viewingalocalmarketingreater Predictingcustomerbehavior: detail 164 anintroduction to neural 11.6 Accessibilityto fiber analysis 165 networks 143 11.7 Workingwith theunderlying 10.1 Unravelingcomplex database 167 situations 144 11.8 Conclusion 168 10.2 Howcananeuralnetworkhelp withmarketing? 145 Appendix A 10.3 Step-by-stepuseofaneural network 145 Real world warehousing: France 10.3.1 What does thetraining reporttell TelecomandSTATlab tools 169 us? 146 10.3.2 Creating andinterpretingthe Appendix B gains table 147 10.3.3 Analyzing thegains chart 149 The businesscase forbusinessintelligence 211 10.3.4 Makingmarketing programsas profitableas possible 151 Appendix C 10.4 Applying themodelto prospects 152 SPSS 239 10.5 Conclusion on neural networks 152 Appendix D The DecisionWORKSsuite Chapter 11 from Advanced Software Engineering andcompetitive analysis Applications 245 support: anintroduction to geographi- calsystemsandMapInfo 155 Glossary 251 11.1 An introduction to MapInfo Professional 156 11.1.1 MapInfotelecommunications Selected bibliography 257 offerings 156