Table Of ContentDATA MINING USING GRAMMAR
BASED GENETIC PROGRAMMING
AND APPLICATIONS
GENETIC PROGRAMMING SERIES
SeriesEditor
JohnKoza
Stanford University
Also in the series:
GENETIC PROGRAMMING AND DATA STRUCTURES: Genetic
Programming+ Data Structures = Automatic Programming! William B.
Langdon;ISBN: 0-7923-8135-1
AUTOMATIC RE-ENGINEERING OF SOFTWARE USING
GENETIC PROGRAMMING, Conor Ryan; ISBN: 0-7923-8653-1
The cover image was generated using Genetic Programming and interactive
selection. Anargyros Sarafopoulos created the image, and the GP interactive
selectionsoftware.
DATA MINING USING GRAMMAR
BASED GENETIC PROGRAMMING
AND APPLICATIONS
by
Man Leung Wong
Lingnan University, Hong Kong
KwongSakLeung
The Chinese University of Hong Kong
KLUWER ACADEMIC PUBLISHERS
NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW
eBookISBN: 0-306-47012-8
Print ISBN: 0-792-37746-X
©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow
All rights reserved
No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher
Created in the United States of America
Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com
Contents
LIST OF FIGURES ............................................................................................ ix
LIST OF TABLES .............................................................................................. xi
PREFACE..........................................................................................................xiii
CHAPTER 1 INTRODUCTION ....................................................................... 1
1.1. DATAMINING......................................................................................... 1
1.2. MOTIVATION........................................................................................... 3
1.3. CONTRIBUTIONS OF THE BOOK............................................................... 5
1.4. OUTLINE OF THE BOOK........................................................................... 7
CHAPTER 2 AN OVERVIEW OF DATA MINING ...................................... 9
2.1. DECISIONTREEAPPROACH..................................................................... 9
2.1.1. ID3............................................................................................. 10
2.1.2. C4.5.......................................................................................... 11
2.2. CLASSIFICATIONRULE............................................................................ 12
2.2.1. AQ Algorithm .......................................................................... 13
2.2.2. CN2 ................................................................................................. 14
2.2.3. C4.5RULES................................................................................ 15
2.3. ASSOCIATIONRULE........................................................................... 16
2.3.1. Apriori ............................................................................................ 17
2.3.2. Quantitative Association Rule Mining ........................................... 18
2.4 STATISTICALAPPROACH........................................................................... 19
2.4.1. Bayesian Classifier ........................................................................ 19
2.4.2. FORTY-NINER .............................................................................. 20
2.4.3. EXPLORA..........................................................................................21
2.5 BAYESIANNETWORKLEARNING............................................................. 22
2.6. OTHERAPPROACHES............................................................................25
CHAPTER 3 AN OVERVIEW ON EVOLUTIONARY ALGORITHMS .. 27
3.1. EVOLUTIONARYALGORITHMS..............................................................27
3.2. GENETICALGORITHMS(GAs) ..............................................................29
3.2.1. The Canonical Genetic Algorithm ................................................30
3.2.1.1. Selection Methods ................................................................. 34
3.2.1.2. Recombination Methods ....................................................... 36
3.2.1.3. Inversion and Reordering ...................................................... 39
3.2.2. Steady State Genetic Alg .............................................................. 40
3.2.3. Hybrid Algorithms ....................................................................... 41
3.3. GENETICPROGRAMMING(GP)............................................................. 41
3.3.1. Introduction to the Traditional GP .............................................. 42
3.3.2. Strongly Typed Genetic Programming (STGP) ........................... 47
vi Contents
3.4. EVOLUTIONSTRATEGIES(ES).............................................................. 48
3.5. EVOLUTIONARYPROGRAMMING(EP)................................................... 53
CHAPTER 4 INDUCTIVE LOGIC PROGRAMMING ............................... 57
4.1. INDUCTIVECONCEPTLEARNING........................................................... 57
4.2. INDUCTIVELOGICPROGRAMMING(ILP).............................................. 59
4.2.1. Interactive ILP ............................................................................. 61
4.2.2. Empirical ILP ............................................................................... 62
4.3. TECHNIQUESANDMETHODSOFILP..................................................... 64
4.3.1. Bottom-up ILP Systems ................................................................ 64
4.3.2. Top-down ILP Systems ................................................................. 65
4.3.2.1. FOIL........................................................................................ 65
4.3.2.2.mFOIL..................................................................................... 68
CHAPTER 5 THE LOGIC GRAMMARS BASED GENETIC
PROGRAMMING SYSTEM(LOGENPRO).................................................. 71
5.1. LOGIC GRAMMARS ............................................................................... 72
5.2. REPRESENTATIONS OF PROGRAMS ........................................................ 74
5.3. CROSSOVER OF PROGRAMS................................................................... 81
5.4. MUTATION OF PROGRAMS ..................................................................... 94
5.5. THEEVOLUTIONPROCESSOFLOGENPRO......................................... 97
5.6. DISCUSSION .......................................................................................... 99
CHAPTER 6 DATA MINING APPLICATIONS USING LOGENPRO ... 101
6.1. LEARNINGFUNCTIONALPROGRAMS ................................................... 101
6.1.1. Learning S-expressions Using LOGENPRO ..............................102
6.1.2. The DOT PRODUCT Problem .......................................... 104
6.1.3. Learning Sub-functions Using Explicit Knowledge ....................110
6.2. INDUCINGDECISIONTREESUSINGLOGENPRO...............................115
6.2.1. Representing Decision Trees as S-expressions ....................... 115
6.2.2. The Credit Screening Problem ................................................. 117
6.2.3. The Experiment ..................................................................... 119
6.3. LEARNINGLOGICPROGRAMFROMIMPERFECTDATA........................ 125
6.3.1. The Chess Endgame Problem ....................................................127
6.3.2. The Setup of Experiments ......................................................128
6.3.3. Comparison of LOGENPRO With FOIL ....................................131
6.3.4. Comparison of LOGENPRO With BEAM-FOIL........................133
6.3.5. Comparison of LOGENPRO With mFOIL1 ...............................133
6.3.6. Comparison of LOGENPRO With mFOIL2 ...............................134
6.3.7. Comparison of LOGENPRO With mFOIL3 ...............................135
6.3.8. Comparison of LOGENPRO With mFOIL4 ...............................135
6.3.9. Discussion..................................................................................136
CHAPTER 7 APPLYING LOGENPRO FOR RULE LEARNING ........... 137
7.1. GRAMMAR..........................................................................................137
7.2. GENETICOPERATORS.......................................................................... 141
vii
7.3. EVALUATION OF RULES......................................................................143
7.4. LEARNINGMULTIPLERULESFROMDATA..........................................145
7.4.1. Previous Approaches .................................................................. 146
7.4.1.1. Pre-selection.................................................................. 146
7.4.1.2. Crowding............................................................................ 146
7.4.1.3. Deterministic Crowding .................................................... 147
7.4.1.4. Fitness Sharing .................................................................. 147
7.4.2. Token Competition .....................................................................148
7.4.3. The Complete Rule Learning Approach .....................................150
7.4.4. Experiments With Machine Learning Databases ...................... 152
7.4.4.1. Experimental Results on the Iris Plant Database ...................... 153
7.4.4.2. Experimental Results on the Monk Database .......................... 156
CHAPTER 8 MEDICAL DATA MINING ...................................................161
8.1. A CASESTUDY ON THE FRACTUREDATABASE...................................161
8.2. A CASESTUDY ON THE SCOLIOSISDATABASE...................................164
8.2.1. Rules for Scoliosis Classification.............................................165
8.2.2. Rules About Treatment ...............................................................166
CHAPTER 9 CONCLUSION AND FUTURE WORK ...............................169
9.1. CONCLUSION.......................................................................................169
9.2. FUTUREWORK....................................................................................172
APPENDIX A THE RULE SETS DISCOVERED .......................................177
A.1. THEBESTRULESETLEARNED FROM THE IRISDATABASE................. 177
A.2. THEBESTRULESETLEARNED FROM THE MONKDATABASE............. 178
A.2.1. Monk1................................................................................ 178
A.2.2. Monk2........................................................................................... 179
A.2.3. Monk3..................................................................................... 182
A.3. THEBESTRULESETLEARNED FROM THE FRACTUREDATABASE.............. 183
A.3.1. Type I Rules: About Diagnosis ...................................................183
A.3.2. Type II Rules: About Operation/Surgeon ........................................ 184
A.3.3. Type III Rules: About Stay ......................................................... 186
A.4. THEBESTRULESETLEARNED FROM THE SCOLIOSISDATABASE.............. 189
A.4.1. Rules for Classification ..............................................................189
A.4.1.1. King-I................................................................................... 189
A.4.1.2. King-II.................................................................................. 190
A.4.1.3. King-III............................................................................. 191
A.4.1.4. King-IV................................................................................ 191
A.4.1.5. King-V................................................................................. 192
A.4.1.6. TL......................................................................................... 192
A.4.1.7. L........................................................................................... 193
A.4.2. Rules for Treatment ......................................................................... 194
A.4.2.1. Observation......................................................................... 194
A.4.2.2. Bracing............................................................................ 194
viii Contents
APPENDIX B THE GRAMMAR USED FOR THE FRACTURE AND
SCOLIOSIS DATABASES .......................................................................... 197
B.1. THE GRAMMAR FOR THE FRACTURE DATABASE ................................ 197
B.2. THE GRAMMAR FOR THE SCOLIOSIS DATABASE ................................ 198
REFERENCES ............................................................................................. 199
INDEX .......................................................................................................... 211
List of figures
FIGURE 2.1: ADECISION TREE ..........................................................................10
FIGURE 2.2: A BAYESIAN NETWORK EXAMPLE ................................................. 23
FIGURE3.1 : CROSSOVER OF CGA. A ONE-POINT CROSSOVER OPERATION IS
PERFORMED ON TWO PARENT, 1100110011 AND 0101010101, AT THE FIFTH
CROSSOVER LOCATION. TWO OFFSPRING, 1100110101 AND 0101010011 ARE
PRODUCED....................................................................................................32
FIGURE 3.2: MUTATION OF CGA. A MUTATION OPERATION IS PERFORMED ON A
PARENT 1100110101 AT THE FIRST AND THE LAST BITS. THE OFFSPRING
0100110100IS PRODUCED ............................................................................33
FIGURE 3.3: THE EFFECTS OF A TWO-POINT (MULTI-POINT) CROSSOVER. A TWO-
POINT CROSSOVER OPERATION IS PERFORMED ON TWO PARENT, 11001100
AND 01010101, BETWEEN THE SECOND AND THE SIXTH LOCATIONS. TWO
OFFSPRING, 11010100 AND01001101,ARE PRODUCED ................................37
FIGURE3.4: THE EFFECTS OF A UNIFORM CROSSOVER. A UNIFORM CROSSOVER
OPERATION IS PERFORMED ON TWO PARENST, 1100110011 AND 0101010101,
AND TWO OFFSPRING WILL BE GENERATED. THIS FIGURE ONLY SHOWS ONE OF
THEM(1101110001).....................................................................................38
FIGURE 3.5: THE EFFECTS OF AN INVERSION OPERATION. AN INVERSION
OPERATION IS PERFORMED ON THE PARENT, 1100110101, BETWEEN THE
SECOND AND THE SIXTH LOCATIONS. AN OFFSPRING, 1111000101, IS
PRODUCED....................................................................................................40
FIGURE3.6: A PARSE TREE OF THE PROGRAM (* (+ X (/ Y 1.5)) (-
z 0.3))..................................................................................................43
FIGURE3.7: THE EFFECTS OF CROSSOVER OPERATION. A CROSSOVER
OPERATION IS PERFORMED ON TWO PARENTAL PROGRAMS,
(* (* 0.5 X) (+ X Y) AND (/ (+ X Y) (* (-X Z) X)).
THE SHADED AREAS ARE EXCHANGED AND TWO OFFSPRING GENERATED ARE:
(* (-X Z) (t X Y)) AND(/ (+ X Y) (* (* 0.5 X) X))
......................................................................................................46
FIGURE3.8: THE EFFECTS OF A MUTATION OPERATION. A MUTATION OPERATION
IS PERFORMED ON THE PROGRAM (* (* 0.5 X) (+ X Y)).T HE
SHADED AREA OF THE PARENTAL PROGRAM IS CHANGED TO A PROGRAM
FRAGMENT ( / ( + Y 4 ) Z ) AND THE OFFSPRING PROGRAM
(* (/ (+ Y 4) Z) (+ X Y)) IS PRODUCED. ................................... 47
FIGURE5.1 : A DERIVATION TREE OF THE S-EXPRESSION IN LISP
(* (/W1.5) (/W1.5) (/W1.5)) ..................................................75
FIGURE5.2: ANOTHER DERIVATION TREE OF THE S-EXPRESSION
(* (/W1.5) (/W1.5) (/W1.5)) ..................................................80
FIGURE5.3 : THE DERIVATIONS TREE OF THE PRIMARY PARENTAL PROGRAM
(+ (-Z 3.5) (-Z 3.8) (/ Z 1.5))....................................... 87
FIGURE5.4: THE DERIVATIONS TREE OF THE SECONDARY PARENTAL PROGRAM
(* (/ W 1. 5) (+ (-W 11) 12) (-W 3.5))......................... 87