ebook img

Data-Driven Technology for Engineering Systems Health Management: Design Approach, Feature Construction, Fault Diagnosis, Prognosis, Fusion and Decisions PDF

364 Pages·2017·11.932 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data-Driven Technology for Engineering Systems Health Management: Design Approach, Feature Construction, Fault Diagnosis, Prognosis, Fusion and Decisions

Gang Niu Data-Driven Technology for Engineering Systems Health Management Design Approach, Feature Construction, Fault Diagnosis, Prognosis, Fusion and Decisions Data-Driven Technology for Engineering Systems Health Management Gang Niu Data-Driven Technology for Engineering Systems Health Management Design Approach, Feature Construction, Fault Diagnosis, Prognosis, Fusion and Decision 123 Gang Niu Institute of Rail Transit TongjiUniversity Shanghai China ISBN978-981-10-2031-5 ISBN978-981-10-2032-2 (eBook) DOI 10.1007/978-981-10-2032-2 Jointlypublished with Science Press, Beijing,China LibraryofCongressControlNumber:2016946012 ©SpringerScience+BusinessMediaSingaporeandSciencePress,Beijing,China2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerScience+BusinessMediaSingaporePteLtd. Preface Systems health management (SHM) has emerged over recent years as significant technologies that are making an impact on both military and commercial mainte- nance practices. This discipline links studies of failure mechanisms to system lifecycle management and is often referred to as prognostics and health manage- ment (PHM), or in transportation applications—vehicle health management (VHM).TechnicalapproachestobuildingmodelsinSHM/PHMcanbecategorized broadly into data-driven approach, model-based approach, and hybrid approach. The data-driven approach for SHM/PHM is also explained in condition-based maintenance (CBM). CBM can be applied as a technical architecture and engi- neering strategy of data-driven PHM. In this book, data-driven PHM/CBM is introduced in details, which mainly emphasis functions of condition monitoring, fault diagnosis, and prognosis. Condition monitoring, fault diagnosis, and prognosis of engineering systems havereceivedconsiderableattention inrecentyearsandareincreasinglybecoming important in industry because of the need to increase reliability and decrease possible loss of production due to faulty systems. Early fault detection, diagnosis, and prognosis can increase system availability and performance, reduce conse- quential damage, prolong machine life, and reduce spare parts inventories and breakdownmaintenance.Withthedevelopmentofartificialintelligencetechniques, many intelligent systems have been employed to assist the maintenance manage- ment task to correctly interpret the fault data. This book aims to provide latest research findings and advanced techniques for the fault diagnosis and prognosis area of engineering systems. It introduces the developmentsandapplicationsofintelligentdiagnosisandprognosistechniquesin recent years. Thisbookdetailsthetechniqueforintelligent faultdiagnosisandprognosisthat implements data-driven approach. Data-driven methodology consists of data acquisition, feature extraction, feature selection, classification, prognosis and data fusion algorithms, etc. for decision making. Each step of data-driven strategy is reviewed including examples. It provides a foundation in the data acquisition, v vi Preface analysis, feature extraction and selection, classification of equipment faults and prognosis through text discussion, worked examples, applications, and use of modern computer tools. Most chapters include with examples showing how to use these tools to solve situations not easily amenable to analytic solutions. This book provides practice in identifying, formulating, and solving fault diagnosis and prognosisproblems.Anextensivesetofworkedexamplesofferstheopportunityto apply concepts discussed in the book to analyze and solve a variety of problems. The organization and basic subject matter for this book parallel a 17 intensive course entitled “Engineering Systems Health Management” offered by Dr. Gang Niu at Tongji University. Shanghai, China Gang Niu Acknowledgements The integration task needed to pull together cohesive and up-to-date materials was enormousandwouldnothavebeenpossible withouttheunselfishandenthusiastic supportIreceivedfrommypreviouscolleaguesandcoworkers.Theresearchwork offaculty andstudentsattheIntelligentMechanicalLaboratory(IML)ofPukyong NationalUniversityandtheCenterforAdvancedLifeCycleEngineering(CALCE) ofUniversityofMarylandformthebackboneofmanytopicscoveredinthisbook. Special thanks also to the Intelligent Control Systems Laboratory of the Georgia Institute of Technology and the Center for Intelligent Maintenance Systems (IMS)ofUniversityofCincinnatifor valuable references.Theauthorisgratefulto Achmad Widodo, Van Tung Tran, Tian Han, Martha Arbayani Bin Zaidan, and Jing Tian, among others for their valuable contributions. I particularly thank mygraduate students for helping collect and integrate some of the original draft. I am gratefully acknowledging the support received over the past years from many industrial sponsors. It is impossible to acknowledge by name many researchers whose work referred in this book. TheworkpresentedinthisbookwassupportedbytheNationalNaturalScience Foundation of China (Grant No. 51575396 and 51205291). Finally, I would like to express my gratitude to my parents, my wife, and my little son James, for their patience, understanding, and encouragement during the hard creation of this book. Gang Niu vii Contents 1 Background of Systems Health Management . .... .... ..... .... 1 1.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 1 1.2 Maintenance Strategy.... .... .... .... .... .... ..... .... 3 1.3 From Maintenance to PHM ... .... .... .... .... ..... .... 10 1.4 Definitions and Terms of Systems Health Management ... .... 12 1.5 Preface to Book Chapters. .... .... .... .... .... ..... .... 13 References. .... .... .... ..... .... .... .... .... .... ..... .... 14 2 Design Approach for Systems Health Management .... ..... .... 15 2.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 15 2.2 Systems Engineering..... .... .... .... .... .... ..... .... 17 2.3 Systems Engineering, Dependability, and Health Management.. .... ..... .... .... .... .... .... ..... .... 18 2.4 SHM Lifecycle Stages ... .... .... .... .... .... ..... .... 20 2.4.1 Research Stage .. .... .... .... .... .... ..... .... 20 2.4.2 Requirements Development Stage.... .... ..... .... 21 2.4.3 System/Functional Analysis. .... .... .... ..... .... 23 2.4.4 Design, Synthesis, and Integration.... .... ..... .... 25 2.4.5 System Test and Evaluation .... .... .... ..... .... 27 2.4.6 HM System Maturation.... .... .... .... ..... .... 29 2.5 A Systems-Based Methodology for PHM/CBM Design... .... 30 2.6 A Proposed PHM Design Approach for Rotary Machinery Systems . .... .... ..... .... .... .... .... .... ..... .... 32 References. .... .... .... ..... .... .... .... .... .... ..... .... 33 3 Overview of Data-Driven PHM .... .... .... .... .... ..... .... 35 3.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 35 3.2 PHM Technical Approaches... .... .... .... .... ..... .... 37 3.3 Data-Driven PHM/CBM System Architecture.. .... ..... .... 39 3.4 Role of Condition Monitoring, Fault Diagnosis, and Prognosis. .... ..... .... .... .... .... .... ..... .... 40 3.5 Fault Diagnosis Framework ... .... .... .... .... ..... .... 41 ix x Contents 3.6 Problems During Implementation... .... .... .... ..... .... 43 3.7 Related Techniques. ..... .... .... .... .... .... ..... .... 45 References. .... .... .... ..... .... .... .... .... .... ..... .... 47 4 Data Acquisition and Preprocessing. .... .... .... .... ..... .... 49 4.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 49 4.2 Data Acquisition... ..... .... .... .... .... .... ..... .... 50 4.2.1 Selecting a Proper Measure. .... .... .... ..... .... 51 4.2.2 Vibration Transducers. .... .... .... .... ..... .... 52 4.2.3 Transducer Selection.. .... .... .... .... ..... .... 58 4.2.4 Transducer Mounting.. .... .... .... .... ..... .... 59 4.2.5 Transducer Location .. .... .... .... .... ..... .... 63 4.2.6 Frequency Span.. .... .... .... .... .... ..... .... 65 4.2.7 Data Display.... .... .... .... .... .... ..... .... 66 4.3 Data Processing ... ..... .... .... .... .... .... ..... .... 70 4.4 Data Analysis. .... ..... .... .... .... .... .... ..... .... 85 4.4.1 Features in Time Domain .. .... .... .... ..... .... 85 4.4.2 Features in Frequency Domain .. .... .... ..... .... 89 4.4.3 Features in Time–Frequency Domain . .... ..... .... 94 References. .... .... .... ..... .... .... .... .... .... ..... .... 98 5 Statistic Feature Extraction ... .... .... .... .... .... ..... .... 101 5.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 101 5.2 Basic Concepts.... ..... .... .... .... .... .... ..... .... 105 5.2.1 Pattern and Feature Vector . .... .... .... ..... .... 105 5.2.2 Class. .... ..... .... .... .... .... .... ..... .... 105 5.3 Parameter Evaluation Technique.... .... .... .... ..... .... 106 5.4 Principal Component Analysis (PCA).... .... .... ..... .... 107 5.5 Independent Component Analysis (ICA) . .... .... ..... .... 109 5.6 Kernel PCA .. .... ..... .... .... .... .... .... ..... .... 112 5.7 Kernel ICA... .... ..... .... .... .... .... .... ..... .... 113 5.8 Fisher Discriminant Analysis (FDA). .... .... .... ..... .... 115 5.9 Linear Discriminant Analysis (LDA) .... .... .... ..... .... 117 5.10 Generalized Discriminant Analysis (GDA).... .... ..... .... 121 5.11 Clustering.... .... ..... .... .... .... .... .... ..... .... 125 5.11.1 k-Centers Clustering .. .... .... .... .... ..... .... 128 5.11.2 k-Means Clustering ... .... .... .... .... ..... .... 130 5.11.3 Hierarchical Clustering .... .... .... .... ..... .... 132 5.12 Other Techniques .. ..... .... .... .... .... .... ..... .... 136 References. .... .... .... ..... .... .... .... .... .... ..... .... 137 6 Feature Selection Optimization. .... .... .... .... .... ..... .... 139 6.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 139 6.2 Individual Feature Evaluation (IFE) . .... .... .... ..... .... 141 6.3 Conditional Entropy ..... .... .... .... .... .... ..... .... 143 6.4 Backward Feature Selection ... .... .... .... .... ..... .... 145 Contents xi 6.5 Forward Feature Selection .... .... .... .... .... ..... .... 146 6.6 Branch and Bound Feature Selection .... .... .... ..... .... 148 6.7 Plus l-Take Away r Feature Selection ... .... .... ..... .... 153 6.8 Floating Forward Feature Selection . .... .... .... ..... .... 155 6.9 Distance-Based Evaluation Technique ... .... .... ..... .... 158 6.10 Taguchi Method-Based Feature Selection. .... .... ..... .... 159 6.11 Genetic Algorithm . ..... .... .... .... .... .... ..... .... 161 6.11.1 General Concept . .... .... .... .... .... ..... .... 161 6.11.2 Differences from Other Traditional Methods..... .... 164 6.11.3 Simple Genetic Algorithm (SGA) .... .... ..... .... 165 6.11.4 Feature Selection Using GA .... .... .... ..... .... 166 6.12 Summary .... .... ..... .... .... .... .... .... ..... .... 169 References. .... .... .... ..... .... .... .... .... .... ..... .... 171 7 Intelligent Fault Diagnosis Methodology . .... .... .... ..... .... 173 7.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 173 7.2 Linear Classifier ... ..... .... .... .... .... .... ..... .... 174 7.2.1 Linear Separation of Finite Set of Vectors.. ..... .... 175 7.2.2 Perceptron Algorithm . .... .... .... .... ..... .... 176 7.2.3 Kozinec’s Algorithm.. .... .... .... .... ..... .... 177 7.2.4 Multi-class Linear Classifier .... .... .... ..... .... 178 7.3 Quadratic Classifier. ..... .... .... .... .... .... ..... .... 179 7.4 Bayesian Classifier. ..... .... .... .... .... .... ..... .... 181 7.5 k-Nearest Neighbors (k-NN)... .... .... .... .... ..... .... 182 7.6 Self-Organizing Feature Map (SOFM) Neural Network ... .... 183 7.7 Learning Vector Quantization (LVQ) Neural Network.... .... 187 7.8 Radial Basis Function (RBF) Neural Network . .... ..... .... 190 7.9 ART Kohonen Neural Network (ART-KNN).. .... ..... .... 192 7.10 Support Vector Machines (SVMs) .. .... .... .... ..... .... 196 7.10.1 Wavelet SVM ... .... .... .... .... .... ..... .... 200 7.10.2 Multi-class Classification... .... .... .... ..... .... 203 7.10.3 Sequential Minimal Optimization (SMO) .. ..... .... 205 7.11 Decision Tree. .... ..... .... .... .... .... .... ..... .... 209 7.11.1 Building Decision Tree.... .... .... .... ..... .... 210 7.11.2 Pruning Decision Tree. .... .... .... .... ..... .... 214 7.12 Random Forest.... ..... .... .... .... .... .... ..... .... 216 7.12.1 Random Forest .. .... .... .... .... .... ..... .... 217 7.12.2 Random Forest Algorithm (RF).. .... .... ..... .... 219 7.12.3 Genetic Algorithm.... .... .... .... .... ..... .... 223 7.13 Adaptive Neurofuzzy Integrated System (ANFIS) .. ..... .... 225 7.13.1 Classification and Regression Tree (CART) ..... .... 226 7.13.2 Adaptive Neurofuzzy Inference System (ANFIS) . .... 229

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.