ebook img

Cyber-Physical Vehicle Systems: Methodology and Applications (Synthesis Lectures on Advances in Automotive Technology) PDF

86 Pages·2020·18.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cyber-Physical Vehicle Systems: Methodology and Applications (Synthesis Lectures on Advances in Automotive Technology)

Cyber-Physical Vehicle Systems Methodology and Applications Synthesis Lectures on Advances in Automotive Technologies Editor AmirKhajepour,UniversityofWaterloo Theautomotiveindustryhasenteredatransformationalperiodthatwillseeanunprecedented evolutioninthetechnologicalcapabilitiesofvehicles.Significantadvancesinnewmanufacturing techniques,low-costsensors,highprocessingpower,andubiquitousreal-timeaccesstoinformation meanthatvehiclesarerapidlychangingandgrowingincomplexity.Thesenew technologies—includingtheinevitableevolutiontowardautonomousvehicles—willultimately deliversubstantialbenefitstodrivers,passengers,andtheenvironment.SynthesisLectureson AdvancesinAutomotiveTechnologySeriesisintendedtointroducesuchnewtransformational technologiesintheautomotiveindustrytoitsreaders. Cyber-PhysicalVehicleSystems:MethodologyandApplications ChenLv,YangXing,JunzhiZhang,andDongpuCao 2020 ReinforcementLearning-EnabledIntelligentEnergyManagementforHybridElectric Vehicles TengLiu 2019 DeepLearningforAutonomousVehicleControl:Algorithms,State-of-the-Art,and FutureProspects SampoKuuti,SaberFallah,RichardBowden,andPhilBarber 2019 NarrowTiltingVehicles:Mechanism,Dynamics,andControl ChenTangandAmirKhajepour 2019 DynamicStabilityandControlofTrippedandUntrippedVehicleRollover ZhilinJin,BinLi,andJungxuanLi 2019 iii Real-TimeRoadProfileIdentificationandMonitoring:TheoryandApplication YechenQin,HongWang,YanjunHuang,andXiaolinTang 2018 NoiseandTorsionalVibrationAnalysisofHybridVehicles XiaolinTang,YanjunHuang,HongWang,andYechenQin 2018 SmartChargingandAnti-IdlingSystems YanjunHuang,SoheilMohagheghiFard,MiladKhazraee,HongWang,andAmirKhajepour 2018 DesignandAvancedRobustChassisDynamicsControlforX-by-WireUnmanned GroundVehicle JunNi,JibinHu,andChangleXiang 2018 ElectrificationofHeavy-DutyConstructionVehicles HongWang,YanjunHuang,AmirKhajepour,andChuanHu 2017 VehicleSuspensionSystemTechnologyandDesign AvestaGoodarziandAmirKhajepour 2017 Copyright©2020byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. Cyber-PhysicalVehicleSystems:MethodologyandApplications ChenLv,YangXing,JunzhiZhang,andDongpuCao www.morganclaypool.com ISBN:9781681737317 paperback ISBN:9781681737324 ebook ISBN:9781681737331 hardcover DOI10.2200/S00969ED1V01Y201912AAT010 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONADVANCESINAUTOMOTIVETECHNOLOGIES Lecture#10 SeriesEditor:AmirKhajepour,UniversityofWaterloo SeriesISSN Print2576-8107 Electronic2576-8131 Cyber-Physical Vehicle Systems Methodology and Applications Chen Lv NanyangTechnologicalUniversity,Singapore Yang Xing NanyangTechnologicalUniversity,Singapore Junzhi Zhang TsinghuaUniversity,P.R.China Dongpu Cao UniversityofWaterloo SYNTHESISLECTURESONADVANCESINAUTOMOTIVE TECHNOLOGIES#10 M &C Morgan &cLaypool publishers ABSTRACT Thisbookstudiesthedesignoptimization,stateestimation,andadvancedcontrolmethodsfor cyber-physicalvehiclesystems(CPVS)andtheirapplicationsinreal-worldautomotivesystems. First,inChapter1,keychallengesandstate-of-the-artofvehicledesignandcontrolinthecon- textofcyber-physicalsystemsareintroduced.InChapter2,acyber-physicalsystem(CPS)based frameworkisproposedforhigh-levelco-designoptimizationoftheplantandcontrollerparam- eters for CPVS, in view of vehicle’s dynamic performance, drivability, and energy along with differentdrivingstyles.Systemdescription,requirements,constraints,optimizationobjectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estima- tion method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controllerisdesignedforasafety-criticalCPVS.Thedetailedcontrolsynthesisandexperimen- talvalidationarepresented.Theapplicationresultspresentedthroughoutthebookvalidatethe feasibilityandeffectivenessoftheproposedtheoreticalmethodsofdesign,estimation,control, andoptimizationforcyber-physicalvehiclesystems. KEYWORDS cyber-physicalvehiclesystems,co-designoptimization,dynamicmodeling,design spaceexploration,parameteroptimization,stateestimation,neuralnetworks,con- trollersynthesis,simulationvalidation,experimentaltesting vii Contents Preface ........................................................... ix 1 Introductions ......................................................1 2 Co-DesignOptimizationforCyber-PhysicalVehicleSystem ...............5 2.1 ProblemFormulation .............................................. 5 2.1.1 HierarchicalOptimizationMethodology ....................... 5 2.1.2 SystemDescription......................................... 5 2.1.3 DrivingEvent ............................................. 7 2.1.4 DrivingStyleRecognition ................................... 7 2.1.5 RequirementsfortheDesignandOptimizationofCPVS .......... 9 2.1.6 ConstraintsforVehicleDesignandOptimization ............... 10 2.2 SystemModelingandValidation.................................... 11 2.2.1 ElectricPowertrainsystem .................................. 11 2.2.2 BlendedBrakeSystem ..................................... 12 2.2.3 DynamicModeloftheVehicleandTyre....................... 12 2.2.4 ExperimentalValidation .................................... 13 2.3 ControllerDesignforDifferentDrivingStyles ........................ 13 2.3.1 High-LevelControllerArchitecture .......................... 13 2.3.2 Low-LevelControllerforDifferentDrivingStyles .............. 14 2.4 Driving-Style-BasedPerformanceExplorationandParameter Optimization ................................................... 16 2.4.1 DesignSpaceExploration .................................. 16 2.4.2 PerformanceExplorationMethodology........................ 16 2.4.3 Driving-Style-OrientedMulti-ObjectiveOptimization........... 16 2.5 OptimizationResultsandAnalysis .................................. 18 2.5.1 OptimizationResultsfortheAggressiveDrivingStyle............ 19 2.5.2 OptimizationResultsoftheModerateDrivingStyle ............. 19 2.5.3 OptimizationResultsoftheConservativeDrivingStyle .......... 21 2.5.4 ComparisonandDiscussion................................. 21 viii 3 StateEstimationofCyber-PhysicalVehicleSystems .....................23 3.1 MultilayerArtificialNeuralNetworksArchitecture ..................... 25 3.1.1 SystemArchitecture ....................................... 25 3.1.2 MultilayerFeed-ForwardNeuralNetwork ..................... 25 3.2 StandardBackpropagationAlgorithm ............................... 27 3.3 Levenberg–MarquardtBackpropagation ............................. 30 3.4 ExperimentalTestingandDataCollection............................ 33 3.4.1 TestingVehicleandScenario ................................ 33 3.4.2 DataCollectionandProcessing .............................. 35 3.4.3 FeatureSelectionandModelTraining......................... 35 3.5 ExperimentResultsandDiscussions................................. 38 3.5.1 ResultsoftheANN-BasedBrakingPressureEstimation .......... 38 3.5.2 ImportanceAnalysisoftheSelectedFeatures ................... 40 3.5.3 ComparisonofEstimationResultswithDifferentLearning Methods ................................................ 40 4 ControllerDesignofCyber-PhysicalVehicleSystems ....................43 4.1 DescriptionoftheNewlyProposedBBWSystem ...................... 45 4.2 ControlAlgorithmDesignforHydraulicPump-BasedPressure Modulation..................................................... 47 4.3 ControlAlgorithmDesignforClosed-Loop Pressure-Difference-LimitingModulation ............................ 49 4.3.1 LinearModulationofOn/OffValve .......................... 49 4.3.2 Closed-LoopPressure-Difference-LimitingControl ............. 53 4.4 Hardware-in-the-LoopTestResults................................. 54 4.4.1 ComparisonofHPBPMandCLPDLControl ................. 56 4.4.2 BrakeBlendingAlgorithmBasedonCLPDLModulation ........ 59 5 Conclusions ......................................................61 References ........................................................63 Authors’Biographies ...............................................73 ix Preface Thisbookstudiesthedesignoptimization,stateestimation,andadvancedcontrolmethodsfor Cyber-Physical Vehicle Systems (CPVS) and their applications in real-world automotive sys- tems. InChapter1,keychallengesandstate-of-the-artofvehicledesignandcontrolinthecon- text of cyber-physical systems are introduced. In Chapter 2, a Cyber-Physical System (CPS)- basedframeworkforco-designoptimizationofanautomatedelectricvehiclewithdifferentdriv- ingstyleswasproposed.Themulti-objectiveoptimizationproblemwasformulated.Thedriving style recognition algorithm was developed using unsupervised machine learning and validated viavehicletesting.Thesystemmodellingandexperimentalverificationwerecarriedout.Vehicle control algorithms were synthesized for three typical driving styles with different protocol se- lections.Theperformanceexplorationmethodologyandalgorithmswereproposed.Testresults show that the overall performances of the vehicle were significantly improved by the proposed co-designoptimizationapproach.Futureworkwillbefocusedonrealvehicleapplicationofthe proposedmethodsandCPSdesignmethodologyimprovement. InChapter3,anovelprobabilisticestimationmethodofbrakepressureisdevelopedfor asafetycriticalCPVSbasedonmultilayerArtificialNeuralNetwork(ANN)withLevenberg- Marquardt Backpropagation Traning (LMBP) training algorithm. The high-level architecture of the proposed multilayer ANN for brake pressure estimation is illustrated at first. Then, an efficient algorithm of LMBP method is developed for model training. The real vehicle testing is carried out on a chassis dynamometer under New European Drive Cycle (NEDC) driving cycles.Theexperimentalresultsshowthatthedevelopedmodelcanaccuratelyestimatethebrake pressure,anditsperformanceisadvantageousoverotherlearning-basedmethodswithrespectto estimationaccuracy,demonstratingthefeasibilityandeffectivenessoftheproposedalgorithm. In Chapter 4, a typical safety-critical CPVS, i.e., the Brake-By Wire (BBW) system, wasintroduced.ComparedtotheexistingBBWsystem,thenewlydevelopedsystemenjoysthe advantage of a simple structure and low cost because only conventional valves and sensors are addedtotheusualhydrauliclayouts.Twopressuremodulationmethods,namely,theHydraulic Pump-BasedPressureModulation(HPBPM)andClosed-LoopPressure-Difference-Limiting (CLPDL) modulation, were proposed to improve the modulation precision of hydraulic brake

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.