ebook img

Cross-Linguistic Differences in the Neural Representation of Human Language: Evidence from Users of Signed Languages. PDF

0.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cross-Linguistic Differences in the Neural Representation of Human Language: Evidence from Users of Signed Languages.

HYPOTHESISANDTHEORYARTICLE published:02January2013 doi:10.3389/fpsyg.2012.00587 Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages DavidP.Corina*,LaurelA.Lawyer andDeborahCates CognitiveNeurolinguisticsLaboratory,CenterforMindandBrain,DepartmentofLinguistics,UniversityofCaliforniaDavis,Davis,CA,USA Editedby: Studies of deaf individuals who are users of signed languages have provided profound TamaraSwaab,UniversityofCalifornia insight into the neural representation of human language. Case studies of deaf signers Davis,USA who have incurred left- and right-hemisphere damage have shown that left-hemisphere Reviewedby: resources are a necessary component of sign language processing.These data suggest OlafHauk,MedicalResearchCouncil CognitionandBrainSciencesUnit,UK that,despitefrankdifferencesintheinputandoutputmodalityoflanguage,coreleftperi- MaireadMacSweeney,University sylvianregionsuniversallyservelinguisticfunction.Neuroimagingstudiesofdeafsigners CollegeLondon,UK have generally provided support for this claim. However, more fine-tuned studies of lin- *Correspondence: guisticprocessingindeafsignersarebeginningtoshowevidenceofimportantdifferences DavidP.Corina,Cognitive in the representation of signed and spoken languages. In this paper, we provide a criti- NeurolinguisticsLaboratory,Center forMindandBrain,Universityof calreviewofthisliteratureandpresentcompellingevidenceforlanguage-specificcortical CaliforniaDavis,267CousteauPlace, representationsindeafsigners.Thesedatalendsupporttotheclaimthattheneuralrepre- Davis,CA95618,USA. sentationoflanguagemayshowsubstantivecross-linguisticdifferences.Wediscussthe e-mail:[email protected] theoretical implications of these findings with respect to an emerging understanding of theneurobiologyoflanguage. Keywords:aphasia,Americansignlanguage,deaf,neurolinguistics INTRODUCTION WilliamStokoe’simpactonLinguisticsandEducationwasquite Casestudiesofdeafsigningindividualswithacquiredbraindam- minimal(McBurney,2001),thisworkformedasolidbaseforwhat age and neuroimaging studies of healthy deaf subjects provide wastobecomeanewfieldofresearch:SignLanguageLinguistics evidence for the importance of left-hemisphere systems in the (forarecentexposition,seeSandlerandLillo-Martin,2006).When mediationof signedlanguages.Deaf signers,likehearingspeak- theinitialpsycholinguisticstudiesofsignedlanguagessuchasASL ers,exhibitlanguagedisturbanceswhenleft-hemispherecortical were published (see for example Klima and Bellugi,1979),they regions are damaged and appear to be remarkably spared fol- came at a time when there remained numerous misconceptions lowing right-hemisphere lesions that may nonetheless disrupt about the status of signed languages (many of which unfortu- non-linguisticvisual-spatialfunctions(Poizneretal.,1987).Neu- natelypersisttoday).Theseearlystudieshelpededucatescientists roimagingstudiesofdeafsignershavegenerallyprovidedsupport andlaypersonsalikethatsignedlanguageslikeASLarenot“uni- forthisclaim(forrecentreviewsseeCampbelletal.,2008;Corina versallanguages,”noraretheyprimitiveformsofcommunication andSpotswood,2012).However,thefactthatemergentlinguistic withlimitedexpressivity,ormanualcodesmadeupbyeducatorsto formsinsignlanguagescapitalizeupontheaffordancesandcon- representthewordsofaspokenlanguage.Fewpeopleunderstood straintsofthevisualsystemratherthantheauditorysystem,and, thatsignedlanguagesaretruehumanlanguages,albeitexpressed further,thattheproductionofsignsrequiresaqualitativelydiffer- inadifferentsignalingmodality. entsystemofarticulatorycontrol,leavesopenthepossibilitythat Thus,the pioneering findings by Bellugi and colleagues were there may be divergences and subsequent specializations of the indeednews.Theydiscovered,forexample,thatlanguageacqui- neural systems that underlie the mediation of signed languages. sitionmilestonesforinfantslearningasignedlanguagefromdeaf Todate,thegreatmajorityofarticlesdiscussingtheneuralrepre- parents as a native language paralleled native spoken language sentationforsignedlanguageshavebeenstronglybiasedtoward milestones,thatsignsareusedasabasisformemorycodesusedby reporting the commonalities between the neural representation deafsigners,andthatsignedlanguages,likespokenlanguages,can of speechandsign,anditisonlyrecentlythatsomeresearchers be analyzed as compositional forms that exhibit linguistic com- have begun to call into question the purported close homology plexity and have systematic means for marking morphological between the neural representations of speech and sign (see for and syntactic properties (see Klima and Bellugi,1979). As neu- example MacSweeney et al., 2008). To understand this state of ropsychologicalstudiesofdeafsignersbegantoappear,onceagain affairs,itisimportanttoprovideabitofhistoricalbackground. therewasaperceivedneedtoconvincinglydemonstratethatsign ItwasnotuntilthepublicationofSignLanguageStructurein languagesweretruehumanlanguages.Emergingdatafromstud- the1960’swhenWilliamStokoeandcolleaguespresentedthefirst ies of sign language aphasia and neuroimaging further showed formallinguisticanalysisofAmericanSignLanguage(Stokoeetal., that demonstrably similar brain areas are used during sign and 1965).Priortothistime,theunderstandingof signedlanguages spokenlanguageprocessing.Thereportingandinitialinterpreta- within the scientific community was quite misinformed. While tionsof thisexcitingbehavioralandneurologicaldatafromsign www.frontiersin.org January2013|Volume3|Article587|1 Corinaetal. Neuralrepresentationofsignedlanguages languagesusedbydeafpersonsledmanytobelievethatlanguage remainsanactiveareaofresearch(seeMcGettiganandScott,2012 modality hadlittle influence onthe core propertiesof linguistic forarecentreview).Inaddition,therearerefreshingdevelopments function; the processes and neural regions underlying sign and intheeffortstounderstandthecontributionsofbothhemispheres speechfunctionswereconsideredlargelyisomorphic,atestament inspeechperception(seeforexampleScottetal.,2000;Zatorreand totheintegrityoftheneurobiologyofthehumancapacityforlan- Belin,2001;BelinandZatorre,2003;Poeppel,2003;BenShalom guage.Indeed,anyresearchthatsuggestedotherwisewasopenly andPoeppel,2008).Oneofthemostimportantdevelopmentsand challengedasbeingamethodologicalanomaly(cf.Hickoketal., particularlygermanetothepresentpaperistheacknowledgment 1998).Fortunately,asthemessageaboutthestatusofsignedlan- thatunderstandingtheneuralmechanismsof speechprocessing guagesaslegitimatehumanlanguagesbecamemorewidespread, requiresanappreciationoftheintimatecouplingbetweenacoustic researchersbegantoquestiontheloreof theotherwiseneatand perception and the articulatory system that gives rise to speech seemingly inseparable homologies that had been constructed to sounds (McGettigan and Scott,2012). Given this state of affairs describetheconvergenceofneuralsystemsmediatingsignedand itiscertainlyworthconsideringwhetherthefrankmodalitydif- spokenlanguages.Inaddition,thegrowingawarenessthatspoken ferences between speech and signed language lead to qualitative languagemaycalluponbothleft-andright-hemisphereresources differences in neural systems mediating the alternative forms of made the idea that human languages may have bi-hemispheric humancommunication. representation seem less challenging. Given the advances in the The fact that left-hemisphere perisylvian regions appear crit- scientificdiscourseofthelanguagesciences,itisworthconsider- ical for the fidelity of sign language expression has been well- ingthepossibilitythatthediversityoflinguisticformsexhibitedby established and is uncontroversial (Poizner et al., 1987; Corina, theworld’slanguageinfacthaverealprocessingconsequences,and 1998a; Hickok et al., 2002; MacSweeney et al., 2008). However, theseprocessingdifferenceshaveidentifiableneuralconsequences. an unresolved issue concerns the role of the right-hemisphere Thestarkcontrastbetweensignandspeechlanguagemodalities in the mediation of ASL and indeed other naturally occurring providesaprivilegedvantagepointtobeginsuchexplorations. signed languages such as British Signed Language (MacSweeney In this paper,we explore three specific examples that suggest et al., 2002b). Data from both lesion studies and neuroimag- qualitativedifferencesinneurofunctionalinstantiationof signed ing indicate that right-hemisphere parietal regions may play a languages.Wefirstconsiderthepossibilitythathemisphericspe- prominent role in the processing of signed languages.A critical cializationforsignedlanguagesandspokenlanguagesmaydiffer; questioniswhetherthisrelianceontheright-hemisphererepre- in particular, we review mounting evidence that unique right- sents domain-specific linguistic mechanisms or domain-general hemisphereresourcesmayberequiredforcompetencyinASLin visual-spatial processing, including processes related to human amannerthatisnotobservedforspokenlanguages.Second,we actionunderstanding. considertheevidencethat,withintheleft-hemisphere,thecortical Initialstudiesreportedthatsignerswithdamagetotheright- organizationforsignedlanguagesmaydifferinsubstantiveways hemispherehadimpairedvisual-spatialdeficitsbutwell-preserved from what is commonly observed in spoken languages. Finally languageskills(Poizneretal.,1987).However,asfurtherstudies weconsiderevidencethatsuggeststhattherequirementsforthe appeared,itbecameclearthatright-hemispheredamageinusers fluentexpressionofasignedlanguageentailuniquemotoriccon- of signedlanguagesalsodisruptedthemeta-controlof language straints,andpresentevidenceforsign-language-specificlinguistic use,which resulted in disruptions of discourse abilities (Hickok disorders.Wethenconsidertheimplicationsofthesedataforour et al., 1999). This finding is similar to those suggesting right- understandingoftheneurobiologyofhumanlanguage. hemispheredamageinusersofspokenlanguageimpactsso-called extra-linguisticfunctions,suchastheinterpretationofmetaphors HEMISPHERICSPECIALIZATIONFORLANGUAGE and humor (Brownell et al., 1990; Kaplan et al., 1990; Rehak Twoofthemostwidelyestablishedfactsofhumanneuroscience et al.,1992).Yet more interesting are the indications that right- are that the two cerebral hemispheres exhibit differential spe- hemispherelesionsmayfundamentallydisruptaspectsofsyntactic cialization for cognitive functions and that the left-hemisphere processinginsignedlanguages.Theinitialreportsofthispossibil- perisylvianregionsplayapredominantroleinprocessingofspo- ityareinfactstatedinPoizneretal.(1987),whonotethatwhile kenlanguage.Inexpressingthesedifferences,itwascommonto left-hemispheredamagecommonlyresultsindisturbancesofsyn- claim that some predefined components of language processing tactic processing of ASL,signers with right-hemisphere damage (forexample:phonology,semantics,andsyntax)represent“core- also exhibited syntactic comprehension problems. For example, linguisticfunctions,”whicharesomehowmoreelementalinstatus, subjectsS.M.andG.G.[right-hemispheredamaged(RHD)sub- while everything else (for example, properties of discourse and jectstestedbyPoizneretal.,1987]performedwellbelowcontrols pragmatics),aresimply“extra-linguisticfunctions.”Morerecently on two tests of spatial syntax. Indeed,as the authors point out, we can observe a re-characterization of the neural representa- “rightlesionedsignersdonotshowcomprehensiondeficitsinany tionofspeechwhichclaimsthelefttemporal-lobeexhibitsmore linguistictest,otherthanthatofspatializedsyntax.”Poizneretal. domain-specificmechanisms,whiletheright-hemisphereexhibits (1987)speculatedthattheperceptualprocessinginvolvedinthe domain-generalmechanisms(McGettiganandScott,2012).For- comprehensionofspatializedsyntaxinvolvesbothleft-andright- tunately,concurrentwiththisnewcharacterizationhasbeenthe hemispheres,andthatcertaincriticalareasof bothhemispheres developmentofsophisticatedneuroimagingtechniquesandsignal mustberelativelyintactforaccurateperformance. manipulationswhichcanhelpelucidatetheessenceof linguistic Additional evidence for right-hemisphere contributions for specificity, and the determination of hemispheric specialization aspects of sign comprehension come from the consideration of FrontiersinPsychology|LanguageSciences January2013|Volume3|Article587|2 Corinaetal. Neuralrepresentationofsignedlanguages thewayinwhichsignedlanguagesroutinelycapitalizeuponthe damaged (LHD) BSL signers relative to elderly control subjects postural properties of the body, the manual articulators, and exhibited deficits on all comprehension tests. RHD signers did the spatial affordances of the visual system to convey complex notdifferfromcontrolsonsingle-signandsingle-predicateverb meanings including grammatical roles (such as subject/object), constructionsorsentencesthatrangedinargumentstructureand prepositionalmeaning,locativerelations,andspeakerviewpoint semanticreversibility.RHDsigners(likeLHDsigners),however, in ways that may not have direct parallels in spoken languages. wereimpairedontestsoflocativerelationshipsexpressedviaclas- Forexample,certainclassesofsignformshavebeendescribedas sifierconstructionsandontestsofclassifierplacementorientation depictive.Thatis,someverbshave,inadditiontotheirusualfunc- androtation. tionasverbs,theabilitytodepicttheeventtheyencode(Liddell, Oneinterpretationofferedforthispatternofresponsesisthat 2003).AsdescribedinDudis(2004,2007)thecontrastbetweena the comprehension of these classifier constructions requires not non-depictingagreementverb,suchasGIVE,versusadepicting onlyintactleft-hemisphereresourcesbutintactright-hemisphere verb,such as HAND-TO,illustrates some of these property dif- visual-spatial processing mechanisms. That is, while both LHD ferences.ThehandshapeandthemovementintheverbGIVEis and RHD signers show comprehension deficits, the RHD sign- notconditionedbytheobjectbeinggiven(thoughthedirection ers’difficultiesstemfrommoregeneralvisual-spatialdeficitsthan ofthemovementmaybeconditionedbygrammaticalstructure); linguistic malfunctions per se. Yet there has been little attempt incontrast,theverbHAND-TOcanbeusedtodescribeonlythe to specify the exact nature of the visual deficits that give rise to transfer of objects that can be held between the thumb and the theselanguagecomprehensionproblems.Animportantquestion fourfingersofthehandshape–apaperdocumentorcreditcard, iswhetherthesegeneralvisual-spatialdeficitsshouldbedeemed butcertainlynotakitchenblender.Thisisonewaythattheverb’s “extra-linguistic” or, rather, be considered a linguistic property iconicityconstrainsitsusage.Additionally,thepalm’scontinuously of signedlanguages.Forexample,Atkinsonetal.(2005)suggest upwardorientationandthepathofthehandcreatedviatheelbow “the deficits stem from the disruption of processes which map emulatethephysicalmotionofthetransferevent.Dudisfurther non-arbitrarysignlocationonthereal-world’sspatialposition.” suggeststhatitisnotsolelythemorphophonologicaldifferencesin However,depictiveformsarenotonlyusedtorefertoreal-world thehandshapethatdifferentiatestheseforms,butrathertheverb’s events,butalsotoimaginaryandnon-presenteventsaswell.In abilitytoportrayadynamicandvisualrepresentationoftransfer, ASLforexample,onemayusedistinctspatiallocationstoestablish whichisademonstrationratherthanplaindescription. andcontrasttwotheoreticalideas,usingseparatesigningspaceand In a similar fashion, spatial prepositional relations between referencestothesespatiallocationstoconveysemanticandcausal objects such as“on,above,under,”etc.,can be conveyed via the relationships between these theoretical constructs. The broader depiction of the physical relation itself rather than encoded by pointiswhetheraphasic deficitsshouldbesolelydefinedasthose a discrete lexical item. For example, an ASL translation of the that have clear homologies to the left-hemisphere maladies evi- Englishsentence“Thepenrestsonabook”may,inpart,involve denced in spoken languages, or whether the patterns observed the use of the two hands whereby one hand configuration with inthedisruptionof signedlanguageswillforceustoreconsider an outstretched finger (representing the pen) is placed on the the conception of linguistic deficits (see also MacSweeney et al., back of a flat open hand (representing the book). This config- 2008fordiscussion).Anadditionalavenueof inquirytofurther urationencodesthespatialmeaning“on”butwithouttheneedfor illuminatetheprocessingrequirementsofspatialformsinsigned aconventionallexicalprepositioncorrespondingto“on.” languagewillcomefromamoresystematiccomparisonbetween Manysignedlanguagesexpresslocativerelationshipsandevents theroleofcomprehensionofthesespatialformscomparedwith inthismannerandhavediscreteinventoriesofhighlyproductive theirproduction(Emmoreyetal.,2004). grammatical forms, typically referred to as classifiers or classi- Neuroimagingstudiesofdeafsignersraiseadditionalquestions fierpredicates,whichparticipateinthesedepictiveconstructions. concerningtheroleoftheright-hemisphereinsignlanguagepro- Whiletheuseof theseformsconstitutesamajorcontrastivelin- cessing. Studies of sentence processing in signed languages have guistic function in signed languages (see Emmorey, 2003 and repeatedlyreportedleft-hemisphereactivationsthatparallelthose paperstherein)theirtheoreticalstatusremainsapointofvibrant found for spoken languages. These activation patterns include discussion and debate (for contrastive views see Liddell, 2003; inferiorfrontalgyrus(includingBroca’sareaandinsula),precen- SandlerandLillo-Martin,2006). tralsulcus,superior,andmiddletemporalcorticalregions,poste- Thiscontroversy,however,hasimportantimplicationsforour riorsuperiortemporalsulcus,angulargyrus,andsupramarginal understandingoftheneurolinguisticsofsignedlanguages,assev- gyrus (e.g.,Neville et al.,1998; Petitto et al.,2000; MacSweeney eral studies have found differential disruptions in the use and etal.,2002a,2006;Newmanetal.,2002;Lambertzetal.,2005;Sakai comprehension of sentences that involve“depictive”forms. For etal.,2005).Activationsintheseregionsareoftenfoundinstudies example, Atkinson et al. (2005) conducted a group study of ofauditorylanguageprocessing(Blumstein,1994;Schlosseretal., LHD and RHD signers of British Sign Language (BSL). Their 1998;DavisandJohnsrude,2003). testsincludedsingle-signandsingle-predicateverbconstructions However,inadditiontothemorefamiliarleft-hemisphereacti- (e.g.,THROW-DART),simple,andcomplexsentencesthatranged vations,studies of sentence processing in signed languages have in argument structure and semantic reversibility, locative con- also noted significant right-hemisphere activation. For exam- structions encoding spatial relationships and lexical preposition ple, activations in right-hemisphere superior temporal, inferior constructions, and a final test of classifier placement orienta- frontal, and posterior-parietal regions have been reported (e.g., tion and rotation. Their findings indicated that left-hemisphere Neville et al., 1998; MacSweeney et al., 2002a, 2006; Newman www.frontiersin.org January2013|Volume3|Article587|3 Corinaetal. Neuralrepresentationofsignedlanguages et al., 2002). The question of whether these patterns of activa- detection in the context of topographic sentences was maximal tionareuniquetosignhasbeenatopicofdebate(seeforexample: forleft-hemisphereinferiorparietallobule(IPL)inskilledsign- Corinaetal.,1998;Hickoketal.,1998),asstudiesofauditoryand ers. MacSweeney et al. (2002b) suggest these activation patterns audio-visual speech have observed right-hemisphere activations mayberelatedtorequirementsforspatialprocessingofhands,as that appear similar to those reported in signing (e.g., Schlosser studiesofnon-signershaveobservedleftIPLactivationinresponse et al., 1998; Davis and Johnsrude, 2003). More recent evidence toimageryofhandmovementsandhandposition(Kosslynetal., suggeststhattheright-hemispherelateralsuperiortemporalacti- 1998;Gerardinetal.,2000;Hermsdorferetal.,2001).Asecondleft vationsmaynotbesign-specific.Capeketal.(2004),forexample, parietalregioninthesestudies,BA7,issuggestedtoreflectsimilar showed that for monolingual speakers of English, audio-visual mechanismsofhandorfingermovement(e.g.,Weeksetal.,2001). Englishsentenceprocessingelicitednotonlyleft-dominantactiva- Analternativeexplanationsuggeststhatneuralregionsforaction tioninlanguageregions,butalsobilateralactivationintheanterior processingmayhavebeenmoreprevalentduringthetopographic and middle lateral sulcus. A direct comparison of audio-visual sentences. Several researchers have observed SPL activation in speech processing in hearing non-signers and BSL processing responsetohumanactionandactionvocabularymoregenerally indeaf signersrevealedhighlyoverlappingregionsof activation (Damasioetal.,2001;GrezesandDecety,2001;Hauketal.,2004; including bilateral activation of the temporal-lobes under each Pulvermülleretal.,2005). linguisticcondition(MacSweeneyetal.,2002a).Previousstudies Importantly, and similar to the findings reported by New- haveshownthatright-hemispheresuperiortemporalregionsare man et al. (2002), native deaf signers in the MacSweeney et al. sensitivetofacial,andespeciallymouth,information(Puceetal., (2002b)studydidshowactivationintherightangulargyrus(BA 1998;Pelphreyetal.,2005).Itiswellknownthatdeafsignersfocus 39).Parietalactivationinthehearingnativesigners,however,was attention on mouth regions while attending to signs (Muir and modulatedbyaccuracyonthetask,withmoreaccuratesubjects Richardson,2005).Thus,thesestudiessuggestthatlateraltempo- showinggreateractivation.Thisfindingsuggeststhatproficiency, ralactivationpatternsarenotsign-specificbutarelikelyindexing rather than age of acquisition,may be a critical determinant of aspectsoftherecognitionofphysicalhumanforms. right-hemisphere engagement. Importantly, activation in right- In contrast to the common temporal-lobe physical-form hemisphere temporal-parietal regions was specific to BSL and regions,neuroimagingdatafurthersuggeststhatrightposterior- was not observed in hearing non-signers watching audio-visual parietal and posterior-temporal regions may play a special role Englishtranslationsofthesamesentences. inthemediationofsignedlanguages(Bavelieretal.,1998;New- Further evidence of the differential contributions of cerebral man et al.,2002). In a series of studies,deaf and hearing native insigncomprehensionisfoundinthestudyreportedby Capek signers, hearing non-signers, and hearing late learners of ASL etal.(2009).Theseresearchersusedelectrophysiologicalrecord- viewed sign language sentences contrasted with sign gibberish. ingtoassessthebrainsystemsmediatingsemanticandsyntactic Deaf and hearing native signers showed significant activation aspectsofASLprocessing.Inthisstudydeafnativesignerswatched in right-hemisphere posterior-parietal and posterior-temporal ASL sentences that were either grammatically well-formed or regions,includingahomologoftheposterior-temporalWernicke’s grammaticallyanomalous.Thegrammaticalanomaliesincluded area.Theseactivationpatternswerenotseeninnon-signers,nor violationsofsemanticexpectanciesandtwodifferentsyntacticvio- weretheyobservedinhearinglatelearnersofASL.Agroupanaly- lations.Inbothcasesthesyntacticviolationsentailedthemisuse sisofnativeandlate-learninghearingsignersconfirmedthatthe ofacceptedconventionsofspatialsyntax.Inonecase,“reversed” right angular gyrus was found to be active only when hearing verb-agreement violations were formed by reversing the direc- native users of ASL performed the task. When hearing signers tion of the verb such that the verb moved toward the subject who learned to sign after puberty performed the same task,the insteadoftheobject.Thesecondgrammaticalviolationmadeuse right angular gyrus activation was not observed. Newman et al. of“unspecified”verb-agreementviolations,whichwerecreatedby (2002) argued that the activation of this neural region during directingaspatial-agreementverbtowardalocationinspacethat signlanguageperceptionmightbeaneuralsignatureofsignlan- hadnotbeendefinedpreviouslyasthesubjectorobject. guage acquisition during the critical period for language. Many As expected, semantically anomalous ASL sentences elicited researchershavespeculatedthatright-hemisphereparietalactiva- an N400 (300–875ms) relative to control sentences. This N400 tioninsignersisassociatedwiththelinguisticuseofspaceinsign responsewasbroadlydistributedoverposteriorregionsinapat- language(Bavelieretal.,1998;Newmanetal.,2002),andrecent ternwidelyconsistentwithstudiesofsemanticviolationsinaural- studieshavesoughttoclarifythecontributionsofspatialprocess- orallanguages.Syntacticviolationselicitedananteriornegativity inginASLandBSLtoobservedright-hemisphereactivations. followed by a widely distributed P600;however,compelling dif- MacSweeney et al. (2002b), for example, compared the role ferences in the distribution of this early negativity were noted. of parietal cortices in an anomaly detection task in BSL. They Reversedverb-agreementviolationselicitedanearlyanteriorneg- testeddeafandhearingnativesignersinaparadigmthatutilized ativity(140–200ms)that waslargestover thelateralsites of the BSLsentencecontextsthateithermadeuseof topographicsign- left-hemisphere, i.e., a Left Anterior Negativity similar to what ing space or did not require topographic mapping.Across both has been found in studies of syntactic violations in spoken lan- groups, comprehension of topographic BSL sentences recruited guages(Friederici,2002).Incontrast,unspecifiedverb-agreement theleftparietal[BA40andsuperiorparietallobule(SPL)-BA7] violations,relativetocanonicalsentences,elicitedananteriorneg- andbilateralposteriormiddletemporalcorticestoagreaterextent ativity(200–360ms)thatwaslargestovertheright lateralfrontal thandidnon-topographicsentences.Activationduringanomaly sites. As with the reversed verb-agreement violations, sentences FrontiersinPsychology|LanguageSciences January2013|Volume3|Article587|4 Corinaetal. Neuralrepresentationofsignedlanguages containing unspecified verb-agreement anomalies also elicited a requirements for the registration of human movements are not broadlydistributedP600thatwaslargerovertheleft-hemisphere. required. Takentogether,theseERPdatasuggestthattherearedistinct A second logical possibility is that the right-hemisphere brainsystemsmediatingsemanticandsyntacticprocessinginASL, involvementdoesreflectlinguisticprocessing;however,thispro- as has been observed for spoken languages (Kutas and Hillyard, cessingisnotspecifictosignedlanguages.Itissimplythecasethat 1980, 1984; Neville et al., 1991). Importantly, the data suggests wehaveyettosystematicallyidentifythepropergrammaticalcon- great similarities in systems mediating semantic processing in structionsinspokenlanguagesthattriggertheinvolvementofthis spokenandsignedlanguage(seealsoNevilleetal.,1997).Incon- region. For example, perhaps there are languages with complex trast, the syntactic violations evoked left anterior negativity in case-marking systems which require registration of the spatial- thecaseofthereversedverb-agreementsentences,andunexpect- temporal ordering of morphemes for determining subject and edly a right anterior negativity for unspecified verb-agreement objectrelationships;or,perhaps,appreciationof specificspatial- violations.Capeketal.(2009)suggestthattheunspecifiedverb- prepositionconstructionswhoseprocessingdynamicshaveyetto agreementviolationslikelyplacedifferentdemandsonthesystem befullyexplored. involved in processing spatial syntax than the reversed verb- A third possibility is that the right-hemisphere activation agreementviolations.Theunspecifiedverb-agreementviolations reflects general visual-spatial processes and is used in the per- refertoaspatiallocationatwhichnoreferenthadpreviouslybeen ceptionofhumanmovementsthatunderliebothsignandspeech. located.Inthesecases,theviewerisforcedtoeitherpositanewref- Asdiscussedabove,thisaccounthasbeenevokedtoexplainthe erentwhoseidentityisunknown(andwillperhapsbeintroduced lateral temporal activation seen during the processing of audio- atalatertimeinthediscourse)orinferthattheintendedreferent visualspeechandsignedlanguage,butfailstoaccountfortheright is one that was previously placed at a different spatial location. posterior-parietal activations reported in Newman et al. (2002). Either way, different processing is required compared with the Weconsiderfurtherimplicationsofthesefindingsbelow,butfirst reversedviolations.Capeketal.(2009,p.8787)state“Theresults we examine the possibility that even within the left-hemisphere clearlyimplicatedistinguishableneuralsubsystemsinvolvedinthe there may be observable language modality conditioned effects processingof‘spatialsyntax’inASLdependingontheprocessing thatdifferentiatespokenandsignedlanguages. demands,andsuggestamorecomplexorganizationfortheneural basisofsyntaxthanaunitary‘grammaticalprocessing’system.” LEFT-HEMISPHERESPECIALIZATION Thus,whenonecloselyexaminesthedatafromneuropsycho- Signerswithleft-hemisphereposteriorlesionsevidencefluentsign logicalcasestudiesofdeafsignerswithleft-andright-hemisphere aphasiawithassociatedcomprehensiondeficits.Thereis,however, damage,neuroimagingdataofASLandBSLcomprehension,and controversyinregardstoanatomicalregionsthatmaygiveriseto electrophysiologicalstudiesofsyntacticprocessinginASL,acon- comprehensionproblemsinspokenandsignedlanguages.Inan sistent story begins to emerge. Specifically, it appears that the effort to examine the role of the temporal lobe inASL compre- comprehensionofparticulargrammaticalconstructions,includ- hensiondeficits,Hickoketal.(2002)comparedthesignlanguage ing aspects of syntax and classifier-predicate constructions in comprehension abilities of LHD and RHD signers. Signers with signedlanguages,requiresright-hemisphereresourcesand,assug- left-hemisphere posterior temporal lobe damage were found to gestedbytheneuroimagingdata,rightposterior-parietalresources performworsethananyothergroup,exhibitingsignificantimpair- in particular,in a manner that is not generally reported for the mentsonsingle-signandsentenceperformanceasaccessedbyan comprehension of spoken languages (see for example Emmorey ASLtranslationof thetokentest(DeRenziandVignolo,1962). etal.,2002). Whiletheauthorsemphasizetheinvolvementofthedamagedtem- If weacceptthisclaim,thenthesedataraiseimportanttheo- porallobeinthesecomprehensiondeficits,thoughnotdiscussed, reticalquestionsforourunderstandingofthebiologicaldetermi- inallcasesthelesionsadditionallyextendedintotheparietallobe. nationofneuralregionsrequiredforhumanlanguageprocessing. Thusisitunclearwhethersignlanguagecomprehensiondeficits However, before we accept this claim, we need to be careful in require impairment to the temporal lobe only,the parietal lobe our assessment. There are at least three logical alternative pos- only,orsomecombinationthereof. sibilities that may account for appearance of right-hemisphere It is noteworthy that the cases described by Chiarello et al. resourcesduringaspectsofgrammaticalandclassifierprocessing (1982)andPoizneretal.(1987)andthecasestudydescribedby in naturally occurring signed languages. First, one may assume Corina et al. (1992), exhibited fluent aphasia with severe com- thattheright-hemisphereinvolvementisnotspecifically“linguis- prehensiondeficits.Lesionsinthesecasestudiesdidnotoccurin tic”innature,butratherreflectsgeneralvisual-spatialprocessing. corticalWernicke’sareaproper,butratherinvolvedmorefrontal Thatistosay,theobservedactivations(andimpairments)simply and inferior parietal areas. In these cases,lesions extended pos- reflect general visual-spatial resources that are required for pro- teriorlytothesupramarginalgyrus.Thisisinteresting,aslesions cessingof perceivedhumanmovements.Becausesignlanguages associatedwiththesupramarginalgyrusaloneinusersofspoken require the registration of such visual-spatial information, and languagedonottypicallyresultinseverespeechcomprehension right-hemisphere parietal regions normally participate in these deficits. These observations have led some to suggest that sign functions, it stands to reason that we may observe activation language comprehension may be more dependent than speech of these regions during sign processing and deficits in process- on left-hemisphere inferior parietal areas, that is, regions asso- ingwhenthesegeneral-purposeregionsaredamaged.Underthis ciated with somatosensory and visual motor integration (Leis- view,we don’t observe activations for spoken languages as such chner, 1943; Chiarello et al., 1982; Poizner et al., 1987; Corina, www.frontiersin.org January2013|Volume3|Article587|5 Corinaetal. Neuralrepresentationofsignedlanguages 1998a,b), while spoken language comprehension might depend ofmovement.Suchmirroringwasnotseenduringnon-linguistic moreheavilyonposteriortemporallobeassociationregionswhose movementandwasqualitativelydifferentfrommirrormovements inputincludesnetworksintimatelyinvolvedwithauditoryspeech effectingdistalmovementsometimesseenincasesof hemipare- processing. Currently the lack of an adequate number of well- sis(Hickoketal.,1996).Whileacknowledgingthelimitationsof described case studies limits our ability to revolve this contro- raresinglecasestudies,weholdthatthiscaseisimportantforour versy. However, as researchers begin to provide more rigorous understandingoftheneurobiologyoflanguageasitindicatesthat behavioral assessments of sign language comprehension defects themodalityand/orformofahumanlinguisticsystemmayplace following right and left-hemisphere damage (see for example, unique demands on the neural mediation and implementation Atkinson et al., 2005), coupled with the ability to attain high- of language. These errors can be taken as evidence for selective resolutionstructuralimagesof thesesubjects,forinstanceusing language-form-specificlinguisticimpairment. voxel-based lesion symptom mapping techniques (Bates et al., 2003),moreobjectiveassessmentsoffunctional-anatomicalrela- CONCLUDINGREMARKS tionshipsoftheposteriortemporalandinferiorparietallobeswill In summary, we have considered three specific instances where bepossible. datafromusersofsignedlanguagessuggeststhatcompetenciesin signlanguageusemayrequireparticipationofneuralresourcesnot ASLPARAPHASIA typicallyencounteredfortheprocessingofspokenlanguage.First, Signlanguagebreakdownfollowingleft-hemispheredamageisnot we examined the mounting evidence that the right-hemisphere haphazard, but affects independently motivated linguistic cate- parietalregionsmayberequiredforsomeaspectsofsigncompre- gories(e.g.,semantics,phonology,morphosyntax).Thisobserva- hension,especiallyinthecontextofspecializedsyntax,aswellasin tionprovidessupportforviewingaphasiaasauniqueandspecific theappreciationofclassifierforms.Wethenconsideredevidence cognitivedeficitratherthanasasubtypeofamoregeneralmotor for the claim that left posterior temporal regions are necessary orsymbolicdeficit.Anexampleof thesystematicityof parapha- forsigncomprehension.Whileresearchshowsthatlefttemporal sic errors across signed and spoken languages can be found in regions do impact sign language comprehension,we noted that Corina (2000). These include examples of both semantic para- research to date has not properly excluded the contributions of phasiaandformational(phonemic)paraphasias.Theformational leftparietalregionsinsignlanguagecomprehensionimpairment, paraphasiaselucidatethedifferentialvulnerabilityof thesublex- thusunderminingtheclaimsforisomorphicfunctionsoflefttem- icalstructures(i.e.,handshape,movement,articulatorylocation) poral lobes in the mediation of all human languages,spoken or of signedlanguages.Theseerrorsdemonstratehowfunctionally signed.Finally,webrieflyrecountedtheunusualpresentationof similarlanguagecategories(e.g.,“majorclasssegments”)maybe linguisticimpairmentincaseofsignerR.S.,whoselanguageerrors selectivelyvulnerabletoimpairment.Whilethesurfacemanifesta- are limited to linguistic productions of two-handed ASL signs, tionsdiffer,theunderlyingdisruptionmayberelatedtoacommon hereagainprovidingevidencethatspecializedneuralresourcesare abstractlevelofrepresentation. requiredtoimplementarticulatorydemandsofasignedlanguage Anunusualcaseofsignparaphasiathatdoesnothaveaclear suchasASL. mappingtopatternsobservedinspokenlanguageisreportedby There are important theoretical issues raised by these data. Hickoketal.(1996).Alife-longsigner,R.S.,sufferedaninfarct Principally,thedatasuggestsaconflictbetweenanamodalaccount totheleftfrontaloperculum.Neurologicalexaminationrevealed oflanguageprocessing,inwhichoneconsidersbrainareasrespon- an initial expressive aphasia that largely resolved with lingering sibleforlanguagetobeindependentoflanguagemodality,versus problems of word-finding and frequent phonemic paraphasia. a modality-influenced view of language, whereby one acknowl- Particularlynoteworthyisthenatureoftheseerrorswhich,incon- edgesthattheremaybepropertiesrequiredfortheexecutionand trast to the handshape errors previously described,demonstrate understandingoflanguageformsthatvaryasafunctionoflinguis- thewayinwhichalanguage’smodalitymayuniquelyinfluencethe ticformandstructure.Asstatedpreviously,languageresearchers formofthelinguisticdeficit–inthiscase,anarticulatoryimpair- are increasingly cognizant of the fact that the neural organiza- mentwithnoclearparallelstospokenlanguagedisruption.Signed tion reflects the intimate coupling between language perception languages,unlike spoken languages,require coordinated control andproduction.Inthepresentcase,wehaveconsideredthedif- ofbothhands.Thepossibilityofdifferentialprogrammingoftwo ferencesandsimilaritiesbetweentheneuralprocessingofspoken potentiallyindependentarticulatorsmayplacequalitativelydiffer- andsignedlanguages.Somescientistswilllikelyconcludethatthis entdemandsontheonthelinguisticsystem.Intheabsenceoflimb representsanextremesituationwithatendencytooutrightdis- apraxia,R.S.exhibitedparaphasiarestrictedtotwo-handedsigns. missthevalidityofthecomparisons.However,ifweacknowledge Forexample,onsignsthatrequiretwohandstoassumedifferent thatbothsignedandspokenlanguagesaretruemanifestationsof handshapesand/ortomoveindependently,R.S.wouldincorrectly thecapacityforhumanlanguage,onemustconsiderthepossibility failtomoveoneofherhands.Inothercases,onsignswherethe thatspecializedandlanguage-specificneuralmechanismsmaybe appropriate movement of one hand was relative to the position requiredforcompetency.Generally,researcherstendtoavoidthis oftheother,R.S.mightproduceanincorrectrelationmovement latterpositionasitleadstowardtheproverbiallyslipperyslope.If inthesensethatthemovementitself wascorrect,butitwasnot weacknowledgelanguage-specificneuralspecialization,mightwe carriedoutcorrectlywithrespecttothespatialrelationshiptothe furtherexpecttoseecasesoflanguagespecificityacrossthediverse other hand. In addition,during one-handed signing,she exhib- formsofspokenlanguages?Thebroaderpointiswhetheraphasic itedmirroringmovementandhandshapeof thedominanthand deficitsshouldbesolelydefinedasthosethathaveclearhomolo- onthenon-dominanthandthatwassomewhatreducedindegree giestotheleft-hemispheremaladiesthatareevidencedinspoken FrontiersinPsychology|LanguageSciences January2013|Volume3|Article587|6 Corinaetal. Neuralrepresentationofsignedlanguages languages,orwhethertheexistenceofsignedlanguageswillforce ACKNOWLEDGMENTS ustoreconsidertheconceptionoflinguisticdeficitssuchasapha- This work was supported in part by grant NSF SBE-0541953 sia and open the possibility that there may be multiple ways in awardedtoGallaudetUniversity’sScienceofLearningCenteron whichthehumanbrainmaymanifestlinguisticabilities. VisualLanguageandVisualLearning. REFERENCES Corina, D. P. (1998b). “The process- Emmorey, K., Grabowski, T., McCul- Klima,E.,andBellugi,U.(1979).The Atkinson,J.,Marshall,J.,Woll,B.,and ingofsignlanguage:evidencefrom lough, S., Damasio, H., Ponto, L., SignsofLanguage.Cambridge,MA: Thacker,A.(2005).Testingcompre- aphasia,”inHandbookofNeurology, Hichwa,R.D.,etal.(2004).Motor- HarvardUniversityPress. hensionabilitiesinusersofBritish eds H. Whitaker and B. Stemmer iconicityofsignlanguagedoesnot Kosslyn, S. M., DiGirolamo, G. J., signlanguagefollowingCVA.Brain (San Diego, CA: Academic Press), altertheneuralsystemsunderlying Thompson, W. L., and Alpert, N. Lang.94,233–248. 313–329. toolandactionnaming.BrainLang. M. (1998). Mental rotation of Bates,E.,Wilson,S.M.,Sayhin,A.P., Corina,D.P.(2000).“SomeObserva- 89,27–37. objectsversushands:neuralmech- Dick, F., Sereno, M. I., Knight, R. tionsRegardingParaphasiainAmer- Friederici, A. D. (2002). Towards a anisms revealed by positron emis- T.,etal.(2003).Voxel-basedlesion- ican Sign Language,” in The Signs neural basis of auditory sentence sion tomography. Psychophysiology symptommapping.Nat.Neurosci.6, ofLanguageRevisited:AnAnthology processing.TrendsCogn.Sci.(Regul. 35,151–161. 448–450. toHonorUrsulaBellugiandEdward Ed.)6,78–84. Kutas,M.,and Hillyard,S.A. (1980). Bavelier, D., Corina, D., Jezzard, P., Klima,edsK.EmmoreyandH.Lane Gerardin, E., Sirigu, A., Lehéricy, S., Reading senseless sentences: brain Clark,V.,Karni,A.,Lalwani,A.,et (Mahwah,NJ:LawrenceErlbaum), Poline,J.,Gaymard,B.,Marsault,C., potentials reflect semantic incon- al. (1998). Hemispheric specializa- 493–507. et al. (2000). Partially overlapping gruity.Science207,203–205. tionforEnglishandASL:leftinvari- Corina,D.P.,Bavelier,D.,andNeville, neuralnetworksforrealandimag- Kutas,M.,and Hillyard,S.A. (1984). ance–rightvariability.Neuroreport H. J. (1998). Language repre- inedhandmovements.Cereb.Cortex Brain potentials during read- 11,1537–1542. sentation in signers: a compari- 10,1093–1104. ing reflect word expectancy and Belin,P.,andZatorre,R.J.(2003).Adap- son of aphasia and fMRI data. Grezes,J.,andDecety,J.(2001).Func- semantic association. Nature 307, tation to speaker’s voice in right Trends Cogn. Sci. (Regul. Ed.) 2, tionalanatomyof execution,men- 161–163. anteriortemporallobe.Neuroreport 468–470. tal simulation, observation, and Lambertz, N., Gizewski, E. R., Greiff, 14,2105–2109. Corina,D.P.,Poizner,H.,Bellugi,U., verbgenerationofactions:ameta- A.,andForsting,M.(2005).Cross- BenShalom,D.,andPoeppel,D.(2008). Feinberg, T., Dowde, D., and O- analysis.Hum.BrainMapp.12,1–19. modal plasticity in deaf subjects Functionalanatomicmodelsoflan- Grady-Batch,L.(1992).Dissociation Hauk, O., Johnsrude, I., and Pul- dependentontheextentofhearing guage:assemblingthepieces.Neuro- betweenlinguisticandnonlinguistic vermüller, F. (2004). Somatotopic loss.BrainRes.Cogn.BrainRes.25, scientist14,119–127. gesturalsystems:acaseforcomposi- representation of action words in 884–890. Blumstein,S.E.(1994).Impairmentsof tionality.BrainLang.43,414–447. humanmotorandpremotorcortex. Leischner,A.(1943).Die“aphasie”der speechproductionandspeechper- Corina,D.P.,andSpotswood,N.(2012). Neuron41,301–307. taubstummen.Arch.Psychiatr.Ner- ceptioninaphasia.Philos.Trans.R. “Neurolinguistics,’inSignLanguage, Hermsdorfer, J., Goldenberg, G., venkr.115,469–548. Soc.Lond.BBiol.Sci.346,29–36. andInternationalHandbook,edsR. Wachsmuth, C., Conrad, B., Liddell,S.K.(2003).Grammar,Gesture, Brownell,H.H.,Simpson,T.L.,Bihrle, Pfau, M. Steinbach, and B. Woll Ceballos-Baumann, A. O., Barten- andMeaninginAmericanSignLan- A.M.,Potter,H.H.,andGardner,H. (Berlin:MoutondeGruyter),739– stein, P., et al. (2001). Cortical guage.Cambridge:CambridgeUni- (1990).Appreciationofmetaphoric 762. correlates of gesture processing: versityPress. alternative word meanings by left Damasio,H.,Grabowski,T.J.,Tranel, clues to the cerebral mechanisms MacSweeney, M., Campbell, R., Woll, and right brain-damaged patients. D.,Ponto,L.L.B.,Hichwa,R.D.,and underlying apraxia during the B.,Brammer,M.J.,Giampietro,V., Neuropsychologia28,375–383. Damasio,A.R.(2001).Neuralcorre- imitation of meaningless gestures. David,A. S., et al. (2006). Lexical Campbell, R., MacSweeney, M., and latesofnamingactionsandofnam- Neuroimage14,149–161. andsententialprocessinginBritish Waters,D.(2008).Signlanguagein ingspatialrelations.Neuroimage13, Hickok,G.,Bellugi,U.,andKlima,E. signlanguage.Hum.BrainMapp.27, thebrain:areview.J.DeafStud.Deaf 1053–1064. S.(1996).Theneurobiologyofsign 63–76. Educ.13,3–20. Davis, M. H., and Johnsrude, I. S. languageanditsimplicationsforthe MacSweeney,M.,Capek,C.M.,Camp- Capek, C., Bavelier, D., Corina, D. P., (2003). Hierarchical processing in neuralbasisoflanguage.Nature381, bell, R., and Woll, B. (2008). The Newman, A. J., Jezzard, P., and spokenlanguagecomprehension.J. 699–702. signing brain: the neurobiology of Neville, H. J. (2004). The cortical Neurosci.23,3423–3431. Hickok, G., Bellugi, U., and Klima, sign language. Trends Cogn. Sci. organization of audio-visual sen- DeRenzi,E.,andVignolo,L.A.(1962). E. S. (1998). What’s right about (Regul.Ed.)12,434–440. tencecomprehension:anfMRIstudy The token test: a sensitive test theneuralorganizationofsignlan- MacSweeney, M., Woll, B., Campbell, at 4 Tesla. Cogn. Brain Res. 2, todetectreceptivedisturbanceson guage?Aperspectiveonrecentneu- R., McGuire, P. K., David, A. S., 111–119. aphasics.Brain85,665–678. roimagingresults.TrendsCogn.Sci. Williams,S.C.,etal.(2002a).Neural Capek,C.M.,Grossi,G.,Newman,A.L., Dudis,P.(2004).Bodypartitioningand 2,465–468. systemsunderlyingBritishsignlan- McBurney,S.L.,Corina,D.,Roeder, real-spaceblends.Cogn.Linguist.15, Hickok,G.,Wilson,M.,Clark,K.,Klima, guageandaudio-visualEnglishpro- B.,etal.(2009).Brainsystemsmedi- 223–238. E.S.,Kritchevshy,M.,andBellugi, cessing in native users. Brain 125, ating semantic and syntactic pro- Dudis,P.(2007).TypesofDepictionin U.(1999).Discoursedeficitsfollow- 1583–1593. cessingindeafnativesigners:biolog- ASL.Washington:GallaudetUniver- ingrighthemispheredamageindeaf MacSweeney, M., Woll, B., Campbell, icalinvarianceandmodalityspeci- sity.[UnpublishedManuscript]. signers.BrainLang.66,233–248. R., Calvert, G. A., McGuire, P. ficity. Proc. Natl. Acad. Sci. U.S.A. Emmorey, K., Damasio, H., McCul- Hickok,G.,Love-Geffen,T.,andKlima, K., David, A. S., et al. (2002b). 106,8784–8798. lough,S.,Grabowski,T.,Ponto,L. E.S.(2002).Roleofthelefthemi- NeuralcorrelatesofBritishsignlan- Chiarello,C.,Knight,R.,andMandel, L., Hichwa, R. D., et al. (2002). sphereinsignlanguagecomprehen- guage comprehension: spatial pro- M.(1982).Aphasiainaprelingually Neural systems underlying spatial sion.BrainLang.82,167–178. cessing demands of topographic deafwoman.Brain105,29–51. languageinAmericansignlanguage. Kaplan,J.A.,Brownell,H.H.,Jacobs, language. J. Cogn. Neurosci. 14, Corina,D.P.(1998a).“Aphasiainusers Neuroimage17,812–824. J.R.,andGardner,H.(1990).The 1064–1075. of signed language,”in Aphasia in Emmorey,K.(ed.).(2003).Perspectives effectsofrighthemispheredamage McBurney,S.L.(2001).WilliamStokoe AtypicalPopulations,edsP.Coppens, on Classifier Constructions in Sign onthepragmaticinterpretationof andthedisciplineofsignlanguage Y.Lebrun,andA.Basso(Mahwah, Languages. Mahwah, NJ: Lawrence conversationalremarks.BrainLang. linguistics. Historiogr. Linguist. 28, NJ:LawrenceErlbaum),261–309. Erlbaum. 38,315–333. 143–186. www.frontiersin.org January2013|Volume3|Article587|7 Corinaetal. Neuralrepresentationofsignedlanguages McGettigan,C.,andScott,S.K.(2012). languageprocessing.Nat.Neurosci. Rehak, A., Kaplan, J. A., Weylman, generatedfingermovements:apet Corticalasymmetriesinspeechper- 5,76–80. S. T., Kelly, B., Brownell, H., and study.Neuroimage14,219–230. ception:what’swrong,what’sright Pelphrey,K.A.,Morris,J.P.,Michelich, Gardner, H. (1992). Story pro- Zatorre, R. J., and Belin, P. (2001). andwhat’sleft.TrendsCogn.Sci.16, C.R.,Allison,T.,andMcCarthy,G. cessing in right-hemisphere brain- Spectralandtemporalprocessingin 269–276. (2005).Functionalanatomyofbio- damaged patients. Brain Lang. 42, humanauditorycortex.Cereb.Cor- Muir, L. J., and Richardson, I. E. G. logicalmotionperceptioninposte- 320–336. tex11,946–953. (2005).Perceptionofsignlanguage riortemporalcortex:anfMRIstudy Sakai, K. L., Tatsuno, Y., Suzuki, K., and its application to visual com- ofeye,mouthandhandmovements. Kimura,H.,and Ichida,Y. (2005). Conflict of Interest Statement: The municationsfordeafpeople.J.Deaf Cereb.Cortex15,1866–1876. Signandspeech:amodalcommon- authors declare that the research was Stud.DeafEduc.10,390–401. Petitto,L.A.,Zatorre,R.J.,Gauna,K., alityinlefthemispheredominance conductedintheabsenceofanycom- Neville,H.J.,Bavelier,D.,Corina,D., Nikelski, J., Dostie, D., and Evans, for comprehension of sentences. mercial or financial relationships that Rauschecker, J. P., Karni, A., Lal- A. C. (2000). Speech-like cerebral Brain128,1407–1417. couldbeconstruedasapotentialcon- wani, A., et al. (1998). Cerebral activity in profoundly deaf people Sandler,W.,andLillo-Martin,D.(2006). flictofinterest. organization for language in deaf processingsignedlanguages:impli- SignLanguageandLinguisticUniver- andhearingsubjects:biologicalcon- cations for the neural basis of sals.Cambridge:CambridgeUniver- Received:06September2012;accepted: straints and effects of experience. human language. Proc. Natl. Acad. sityPress. 11December2012;publishedonline:02 Proc. Natl. Acad. Sci. U.S.A. 95, Sci.U.S.A.97,13961–13966. Schlosser,M.J.,Aoyagi,N.,Fulbright, January2013. 922–929. Poeppel, D. (2003). The analysis of R. K., Gore, J. C., and McCarthy, Citation: Corina DP, Lawyer LA and Neville, H. J., Coffey, S. A., Lawson, speechindifferenttemporalintegra- G.(1998).FunctionalMRIstudies Cates D (2013) Cross-linguistic differ- D.S.,Fischer,A.,Emmorey,K.,and tionwindows:cerebrallateralization of auditory comprehension. Hum. ences in the neural representation of Bellugi, U. (1997). Neural systems as ‘asymmetric sampling in time.’ BrainMapp.6,1–13. human language: evidence from users mediatingAmericansignlanguage: SpeechCommun.41,245–255. Scott,S.K.,Blank,C.C.,Rosen,S.,and of signed languages. Front. Psychology effects of sensory experience and Poizner,H.,Klima,E.S.,andBellugi,U. Wise,R.J.(2000).Identificationof 3:587.doi:10.3389/fpsyg.2012.00587 age of acquisition. Brain Lang. 57, (1987).WhatHandsRevealaboutthe apathwayforintelligiblespeechin ThisarticlewassubmittedtoFrontiersin 285–308. Brain.Cambridge,MA:MITPress. the left temporal lobe. Brain 123, LanguageSciences,aspecialtyofFrontiers Neville, H. J., Nicol, J. L., Barss, A., Puce,A.,Truett,A.,Bentin,S.,Gore,J. 2400–2406. inPsychology. Forster, K. I., and Garrett, M. F. C.,andMcCarthy,G.(1998).Tem- Stokoe, W., Casterline, D., and Copyright©2013Corina,Lawyer and (1991).Syntacticallybasedsentence poral cortex activation in humans Croneberg,C.(1965).ADictionary Cates.Thisisanopen-accessarticledis- processing classes: evidence from viewingeyeandmouthmovements. of American Sign Language. Wash- tributedunderthetermsoftheCreative event-related brain potentials. J. J.Neurosci.18,2188–2199. ington, DC: Gallaudet University Commons Attribution License, which Cogn.Neurosci.3,151–165. Pulvermüller, F., Shtyrov, Y., and Press. permitsuse,distributionandreproduc- Newman,A.J.,Bavelier,D.,Corina,D., Ilmoniemi,R.(2005).Brainsigna- Weeks,R.A.,Honda,M.,Catalan,M. tioninotherforums,providedtheoriginal Jezzard,P.,andNeville,H.J.(2002). tures of meaning access in action J.,andHallett,M.(2001).Compari- authorsandsourcearecreditedandsub- A critical period for right hemi- wordrecognition.J.Cogn.Neurosci. sonofauditory,somatosensory,and jecttoanycopyrightnoticesconcerning sphererecruitmentinAmericansign 17,884–892. visually instructed and internally anythird-partygraphicsetc. FrontiersinPsychology|LanguageSciences January2013|Volume3|Article587|8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.