ebook img

CRC Standard Mathematical Tables and Formulae, 31st Edition PDF

842 Pages·2002·9.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CRC Standard Mathematical Tables and Formulae, 31st Edition

31st EDITION CRC standard MathematicAL TABLES and formulae DANIEL ZWILLINGER CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. © 2003 by CRC Press LLC Editor-in-Chief DanielZwillinger RensselaerPolytechnicInstitute Troy,NewYork Associate Editors StevenG.Krantz KennethH.Rosen WashingtonUniversity AT&TBellLaboratories St. Louis,Missouri Holmdel,NewJersey Editorial Advisory Board GeorgeE.Andrews BenFusaro PennsylvaniaStateUniversity FloridaStateUniversity UniversityPark,Pennsylvania Tallahassee,Florida MichaelF.Bridgland AlanF.Karr CenterforComputingSciences NationalInstituteStatisticalSciences Bowie,Maryland ResearchTrianglePark,NorthCarolina J.DouglasFaires AlMarden YoungstownStateUniversity UniversityofMinnesota Youngstown,Ohio Minneapolis,Minnesota GeraldB.Folland WilliamH.Press UniversityofWashington LosAlamosNationalLab Seattle,Washington LosAlamos,NM87545 D3pZ4i & bhgvld & rosea (for softarchive) Stole src from http://avaxho.me/blogs/exlib/ © 2003 by CRC Press LLC Preface IthaslongbeentheestablishedpolicyofCRCPresstopublish,inhandbookform, the most up-to-date, authoritative, logically arranged, and readily usable reference materialavailable. Priortothepreparationofthis31st EditionoftheCRCStandard Mathematical Tables and Formulae, the content of such a book was reconsidered. The previous edition was carefully analyzed, and input was obtained from practi- tionersinthemanybranchesofmathematics,engineering,andthephysicalsciences. Theconsensuswasthatnumeroussmalladditionswererequiredinseveralsections, andseveralnewareasneededtobeadded. Someofthenewmaterialsincludedinthiseditionare: gametheoryandvoting power,heuristicsearchtechniques,quadratic elds, reliability,riskanalysisandde- cisionrules,atableofsolutionstoPell’sequation,atableofirreduciblepolynomials in ,alongertableofprimenumbers,aninterpretationofpowersof10,acol- lec(cid:0)tio(cid:0)(cid:0)n(cid:1)o(cid:1)f“proofswithoutwords”,andrepresentationsofgroupsofsmallorder. In total,therearemorethan30completelynewsections,morethan50newandmod- i ed entriesinthesections,morethan90distinguishedexamples, andmorethana dozennewtablesand gures. Thisbringsthetotalnumberofsections,sub-sections, andsub-sub-sectionstomorethan1,000. Withinthosesectionsarenowmorethan 3,000separateitems(ade nition,afact,atable,oraproperty). Theindexhasalso beenextensivelyre-workedandexpandedtomake nding resultsfasterandeasier; therearenowmorethan6,500indexreferences(with75cross-referencesofterms) andmorethan750notationreferences. ThesamesuccessfulformatwhichhascharacterizedearliereditionsoftheHand- bookisretained,whileitspresentationhasbeenupdatedandmademoreconsistent frompagetopage. Materialispresentedinamulti-sectionalformat,witheachsec- tioncontainingavaluablecollectionoffundamentalreferencematerial—tabularand expository. InlinewiththeestablishedpolicyofCRCPress,theHandbookwillbekeptas currentandtimelyasispossible. Revisionsandanticipatedusesofnewermaterials andtableswillbeintroducedastheneedarises.Suggestionsfortheinclusionofnew materialinsubsequenteditionsandcommentsregardingthepresenteditionarewel- comed. Thehomepageforthisbook,whichwillincludeerrata,willbemaintained athttp://www.mathtable.com/. (cid:0)(cid:1)T(cid:1)h(cid:2)e(cid:3)m(cid:4)(cid:4)a(cid:5)jo(cid:6)r(cid:1)m(cid:7)(cid:8)a(cid:6)te(cid:9)r(cid:1)ia(cid:0)l(cid:1)in(cid:9)(cid:10)th(cid:11)i(cid:12)s(cid:8)n(cid:13)e(cid:14)w(cid:6)editionisasfollows: Chapter1:Analysis beginswithnumbersandthencombinesthemintoseriesand products.SeriesleadnaturallyintoFourierseries. Numbersalsoleadtofunc- tionswhichresultsincoverageofrealanalysis,complexanalysis,andgener- alizedfunctions. Chapter2:Algebra covers the different types of algebra studied: elementary al- gebra, vectoralgebra,linearalgebra,andabstractalgebra. Alsoincludedare detailsonpolynomialsandaseparatesectiononnumbertheory. Thischapter includesmanynewtables. Chapter3:DiscreteMathematics coverstraditionaldiscretetopicssuchascombi- natorics, graph theory, coding theory and information theory, operations re- © 2003 by CRC Press LLC search, and game theory. Also includedin this chapterare logic, set theory, andchaos. Chapter4:Geometry covers all aspects of geometry: points, lines, planes, sur- faces,polyhedra,coordinatesystems,anddifferentialgeometry. Chapter5:ContinuousMathematics coverscalculusmaterial: differentiation,in- tegration,differentialandintegralequations,andtensoranalysis.Alargetable ofintegralsis included. Thischapteralsoincludesdifferentialforms andor- thogonalcoordinatesystems. Chapter6:SpecialFunctions contains a sequence of functions starting with the trigonometric,exponential,andhyperbolicfunctions,andleadingtomanyof thecommon functions encounteredin applications: orthogonalpolynomials, gammaandbetafunctions,hypergeometricfunctions,Besselandellipticfunc- tions, andseveralothers. This chapter also contains sections onFourierand Laplacetransforms,andincludestablesofthesetransforms. Chapter7:ProbabilityandStatistics beginswithbasicprobabilityinformation(de n- ingseveralcommondistributions)andleadstocommonstatisticalneeds(point estimates,con denceintervals,hypothesistesting,andANOVA).Tablesofthe normaldistribution,andotherdistributions,areincluded.Alsoincludedinthis chapterarequeuingtheory,Markovchains,andrandomnumbergeneration. Chapter8:ScientificComputing explores numerical solutions of linear and non- linearalgebraicsystems,numericalalgorithmsforlinearalgebra,andhowto numericallysolveordinaryandpartialdifferentialequations. Chapter9:FinancialAnalysis contains the formulae neededto determine the re- turn on an investment and how to determine an annuity (i.e., the cost of a mortgage). Numericaltablescoveringcommonvaluesareincluded. Chapter10:Miscellaneous containsdetailsonphysicalunits(de nitionsandcon- versions),formulaefordatecomputations,listsofmathematicalandelectronic resources,andbiographiesoffamousmathematicians. It has been exciting updating this edition and making it as useful as possible. Butitwouldnothavebeenpossiblewithoutthelovingsupportofmyfamily,Janet TaylorandKentTaylorZwillinger. DanielZwillinger (cid:15)(cid:16)(cid:17)(cid:11)(cid:11)(cid:17)(cid:18)(cid:19)(cid:12)(cid:20)(cid:21)1(cid:9)5(cid:11)O(cid:22)c(cid:6)t(cid:8)o(cid:6)b(cid:17)er(cid:1)2(cid:8)0(cid:12)0(cid:23)2(cid:22) © 2003 by CRC Press LLC Contributors KarenBolinger WilliamC.Rinaman ClarionUniversity LeMoyneCollege Clarion,Pennsylvania Syracuse,NewYork PatrickJ.Driscoll CatherineRoberts U.S.MilitaryAcademy CollegeoftheHolyCross WestPoint,NewYork Worcester,Massachusetts M.LawrenceGlasser JosephJ.Rushanan ClarksonUniversity MITRECorporation Potsdam,NewYork Bedford,Massachusetts JeffGoldberg UniversityofArizona LesServi Tucson,Arizona MITLincolnLaboratory Lexington,Massachusetts RobGross BostonCollege PeterSherwood ChestnutHill,Massachusetts InteractiveTechnology,Inc. GeorgeW.Hart Newton,Massachusetts SUNYStonyBrook NeilJ.A.Sloane StonyBrook,NewYork AT&TBellLabs MelvinHausner MurrayHill,NewJersey CourantInstitute(NYU) NewYork,NewYork ColeSmith UniversityofArizona VictorJ.Katz Tucson,Arizona MAA Washington,DC MikeSousa Veridian SilvioLevy AnnArbor,Michigan MSRI Berkeley,California GaryL.Stanek MichaelMascagni YoungstownStateUniversity FloridaStateUniversity Youngstown,Ohio Tallahassee,Florida MichaelT.Strauss RayMcLenaghan HME UniversityofWaterloo Newburyport,Massachusetts Waterloo,Ontario,Canada NicoM.Temme JohnMichaels CWI SUNYBrockport Amsterdam,TheNetherlands Brockport,NewYork RogerB.Nelsen AhmedI.Zayed Lewis&ClarkCollege DePaulUniversity Portland,Oregon Chicago,Illinois © 2003 by CRC Press LLC TableofContents Chapter1 Analysis (cid:2) KarenB(cid:2)ol(cid:2)in(cid:2)ge(cid:2)r,(cid:2)M(cid:2).(cid:2)La(cid:2)w(cid:2)re(cid:2)n(cid:2)ce(cid:2)G(cid:2)la(cid:2)ss(cid:2)er(cid:2),R(cid:2) o(cid:2)b(cid:2)G(cid:2)ro(cid:2)ss(cid:2),(cid:2)an(cid:2)d(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) NeilJ.A.Sloane Chapter2 Algebra (cid:2) PatrickJ(cid:2).(cid:2)D(cid:2)ris(cid:2)c(cid:2)ol(cid:2)l,(cid:2)Ro(cid:2)b(cid:2)G(cid:2)ro(cid:2)ss(cid:2),(cid:2)Jo(cid:2)hn(cid:2) M(cid:2) i(cid:2)ch(cid:2)a(cid:2)el(cid:2)s,(cid:2)Ro(cid:2)g(cid:2)er(cid:2)B(cid:2).(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Nelsen,andBradWilson Chapter3 DiscreteMathematics (cid:2) JeffGoldberg,Melvin(cid:2)H(cid:2)a(cid:2)us(cid:2)ne(cid:2)r,(cid:2)Jo(cid:2)s(cid:2)ep(cid:2)h(cid:2)J.(cid:2)R(cid:2)us(cid:2)ha(cid:2)n(cid:2)an(cid:2),(cid:2)Le(cid:2)s(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Servi,andColeSmith Chapter4 Geometry (cid:2) GeorgeW(cid:2).H(cid:2)a(cid:2)rt(cid:2),S(cid:2)il(cid:2)vi(cid:2)o(cid:2)Le(cid:2)vy(cid:2),(cid:2)an(cid:2)d(cid:2)R(cid:2)ay(cid:2)M(cid:2)c(cid:2)Le(cid:2)n(cid:2)ag(cid:2)ha(cid:2)n(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Chapter5 ContinuousMathematics (cid:2) RayMcLenaghanandC(cid:2)a(cid:2)th(cid:2)er(cid:2)in(cid:2)e(cid:2)Ro(cid:2)b(cid:2)er(cid:2)ts(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Chapter6 SpecialFunctions (cid:2) NicoM.Temmea(cid:2)nd(cid:2)A(cid:2)h(cid:2)me(cid:2)d(cid:2)I.(cid:2)Z(cid:2)ay(cid:2)e(cid:2)d(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Chapter7 ProbabilityandStatistics (cid:2) MichaelMascagni,Will(cid:2)ia(cid:2)m(cid:2)C(cid:2).(cid:2)Ri(cid:2)na(cid:2)m(cid:2)an(cid:2),(cid:2)M(cid:2)ik(cid:2)e(cid:2)So(cid:2)u(cid:2)sa(cid:2),a(cid:2)n(cid:2)d(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) MichaelT.Strauss Chapter8 Scientific Computing (cid:2) GaryStanek (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Chapter9 FinancialAnalysis (cid:2) DanielZwillinger(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Chapter10 Miscellaneous (cid:2) RobGross,Vi(cid:2)ct(cid:2)or(cid:2)J(cid:2).K(cid:2)a(cid:2)tz(cid:2),a(cid:2)nd(cid:2) M(cid:2) i(cid:2)ch(cid:2)a(cid:2)el(cid:2)T(cid:2).S(cid:2)tr(cid:2)au(cid:2)ss(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) © 2003 by CRC Press LLC TableofContents Chapter1 Analysis (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 1.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Specialnumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Seriesandproducts . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Fourierseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Complexanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Intervalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Realanalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Generalizedfunctions . . . . . . . . . . . . . . . . . . . . . . . . Chapter2 Algebra (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 2.1 Proofswithoutwords . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Elementaryalgebra . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Numbertheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Vectoralgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Linearandmatrixalgebra . . . . . . . . . . . . . . . . . . . . . . 2.7 Abstractalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter3 DiscreteMathematics (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 3.1 Symbolic logic 3.2 Settheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Combinatorialdesigntheory . . . . . . . . . . . . . . . . . . . . 3.6 Communicationtheory . . . . . . . . . . . . . . . . . . . . . . . 3.7 Differenceequations. . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Discretedynamicalsystemsandchaos . . . . . . . . . . . . . . . 3.9 Gametheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Operationsresearch . . . . . . . . . . . . . . . . . . . . . . . . . Chapter4 Geometry (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 4.1 Coordinatesystemsintheplane . . . . . . . . . . . . . . . . . . . 4.2 Planesymmetriesorisometries . . . . . . . . . . . . . . . . . . . 4.3 Othertransformationsoftheplane . . . . . . . . . . . . . . . . . 4.4 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . © 2003 by CRC Press LLC 4.5 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Specialplanecurves . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Coordinatesystemsinspace . . . . . . . . . . . . . . . . . . . . 4.9 Spacesymmetriesorisometries . . . . . . . . . . . . . . . . . . 4.10 Othertransformationsofspace . . . . . . . . . . . . . . . . . . . 4.11 Directionanglesanddirectioncosines . . . . . . . . . . . . . . 4.12 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 Linesinspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15 Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.16 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.17 Surfacesofrevolution: thetorus . . . . . . . . . . . . . . . . . . 4.18 Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.19 Sphericalgeometry&trigonometry. . . . . . . . . . . . . . . . . 4.20 Differentialgeometry . . . . . . . . . . . . . . . . . . . . . . . . 4.21 Angleconversion . . . . . . . . . . . . . . . . . . . . . . . . . . 4.22 Knotsuptoeightcrossings . . . . . . . . . . . . . . . . . . . . Chapter5 ContinuousMathematics (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 5.1 Differentialcalculus . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Differentialforms . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Tableofinde niteintegrals . . . . . . . . . . . . . . . . . . . . . 5.5 Tableofde nite integrals . . . . . . . . . . . . . . . . . . . . . . 5.6 Ordinarydifferentialequations . . . . . . . . . . . . . . . . . . . 5.7 Partialdifferentialequations. . . . . . . . . . . . . . . . . . . . . 5.8 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Integralequations . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10 Tensoranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 Orthogonalcoordinatesystems . . . . . . . . . . . . . . . . . . . 5.12 Controltheory . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter6 SpecialFunctions (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 6.1 Trigonometricorcircularfunctions . . . . . . . . . . . . . . . . . 6.2 Circularfunctionsandplanartriangles . . . . . . . . . . . . . . 6.3 Inversecircularfunctions . . . . . . . . . . . . . . . . . . . . . 6.4 Ceilingand oor functions . . . . . . . . . . . . . . . . . . . . 6.5 Exponentialfunction . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Logarithmicfunctions . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Hyperbolicfunctions . . . . . . . . . . . . . . . . . . . . . . . 6.8 Inversehyperbolicfunctions . . . . . . . . . . . . . . . . . . . . 6.9 Gudermannianfunction . . . . . . . . . . . . . . . . . . . . . . . 6.10 Orthogonalpolynomials . . . . . . . . . . . . . . . . . . . . . . © 2003 by CRC Press LLC 6.11 Gammafunction . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 Betafunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.13 Errorfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 Fresnelintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.15 Sine,cosine,andexponentialintegrals . . . . . . . . . . . . . . 6.16 Polylogarithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.17 Hypergeometricfunctions . . . . . . . . . . . . . . . . . . . . . 6.18 Legendrefunctions . . . . . . . . . . . . . . . . . . . . . . . . . 6.19 Besselfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.20 Ellipticintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.21 Jacobianellipticfunctions . . . . . . . . . . . . . . . . . . . . . . 6.22 Clebsch–Gordancoef cients . . . . . . . . . . . . . . . . . . . . 6.23 Integraltransforms: Preliminaries. . . . . . . . . . . . . . . . . . 6.24 Fouriertransform . . . . . . . . . . . . . . . . . . . . . . . . . . 6.25 DiscreteFouriertransform(DFT) . . . . . . . . . . . . . . . . . . 6.26 FastFouriertransform(FFT) . . . . . . . . . . . . . . . . . . . . 6.27 MultidimensionalFouriertransform . . . . . . . . . . . . . . . . 6.28 Laplacetransform . . . . . . . . . . . . . . . . . . . . . . . . . . 6.29 Hankeltransform . . . . . . . . . . . . . . . . . . . . . . . . . . 6.30 Hartleytransform . . . . . . . . . . . . . . . . . . . . . . . . . . 6.31 Hilberttransform . . . . . . . . . . . . . . . . . . . . . . . . . . 6.32 -Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (cid:0)(cid:0)(cid:0) 6.33 Tablesoftransforms . . . . . . . . . . . . . . . . . . . . . . . . . Chapter7 ProbabilityandStatistics (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 7.1 Probabilitytheory . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Classicalprobabilityproblems . . . . . . . . . . . . . . . . . . 7.3 Probabilitydistributions . . . . . . . . . . . . . . . . . . . . . . 7.4 Queuingtheory . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Markovchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Randomnumbergeneration . . . . . . . . . . . . . . . . . . . . 7.7 Controlchartsandreliability . . . . . . . . . . . . . . . . . . . 7.8 Riskanalysisanddecisionrules . . . . . . . . . . . . . . . . . . . 7.9 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.10 Con denceintervals . . . . . . . . . . . . . . . . . . . . . . . . . 7.11 Testsofhypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 7.12 Linearregression . . . . . . . . . . . . . . . . . . . . . . . . . . 7.13 Analysisofvariance(ANOVA) . . . . . . . . . . . . . . . . . . . 7.14 Probabilitytables . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15 Signalprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter8 Scienti c Computing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 8.1 Basicnumericalanalysis . . . . . . . . . . . . . . . . . . . . . 8.2 Numericallinearalgebra . . . . . . . . . . . . . . . . . . . . . . © 2003 by CRC Press LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.