COVID Transmission Modeling COVID Transmission Modeling An Insight into Infectious Diseases Mechanism DM Basavarajaiah B Narasimha Murthy First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2022 DM Basavarajaiah and B Narasimha Murthy Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been a cknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Basavarajaiah, DM, author. | Murthy, B. Narasimha, author. Title: COVID transmission modeling : an insight into infectious diseases mechanism / DM Basavarajaiah, B. Narasimha Murthy. Description: First edition. | Boca Raton : Chapman & Hall\CRC Press, 2022. | Includes bibliographical references and index. | Summary: “This book will explore and formulate new mathematical/statistical and epidemiological modelling based on the research findings. It covers all the aspects of mitigation, estimation of transmission rate, control measures, economic impact assessment, genetic complexity of COVID and herd immunity”—Provided by publisher. Identifiers: LCCN 2021058806 (print) | LCCN 2021058807 (ebook) | ISBN 9781032069708 (hardback) | ISBN 9781032069746 (paperback) | ISBN 9781003204794 (ebook) Subjects: LCSH: COVID-19 (Disease)—Transmission. | Coronavirus infections—Prevention. | COVID-19 (Disease)—Economic aspects. Classification: LCC RA644.C67 B365 2022 (print) | LCC RA644.C67 (ebook) | DDC 362.1962/414—dc23/eng/20220121 LC record available at https://lccn.loc.gov/2021058806 LC ebook record available at https://lccn.loc.gov/2021058807 ISBN: 9781032069708 (hbk) ISBN: 9781032069746 (pbk) ISBN: 9781003204794 (ebk) DOI: 10.1201/9781003204794 Typeset in Palatino by codeMantra Dedicated to All victims of Novel Coronavirus 2019 Contents Preface .............................................................................................................................................xv Acknowledgments .....................................................................................................................xvii Authors .........................................................................................................................................xix 1. Mathematical Modeling Approach to COVID-19: Vetted Real Data ..........................1 1.1 Introduction ...................................................................................................................1 1.1.1 Main Objectives of This Book ........................................................................3 1.2 Anatomical Structure of COVID-19 Virus ...............................................................10 1.3 Virus Incubation Period .............................................................................................11 1.3.1 Disease Carriers .............................................................................................12 1.3.2 Case Fatality Rate (CFR, %) ..........................................................................14 1.3.3 COVID-19 Transmission Mechanisms ........................................................15 1.4 Epidemiological Aspects of nCov2019 (SARS-Cov-19) ..........................................15 1.5 Economic Impacts of Novel Coronavirus ................................................................17 1.6 Mathematical Model for the Prediction of Novel Coronavirus (nCov2019) .......18 1.6.1 Variables Used for Model Building .............................................................19 1.6.2 Endemic and Epidemic Equilibria ..............................................................21 1.7 Model Discussion ........................................................................................................25 1.7.1 Model Conclusions ........................................................................................26 1.8 Epidemiological Model for the Estimation of Hazard Rate and Geometric Progression of nCov2019 ............................................................................................27 1.8.1 Formulation of the Epidemiological Risk Assessment COVID Model ....28 1.9 Epidemiological Model Approach of New Diseases .............................................36 1.9.1 Model Formulation ........................................................................................37 1.9.1.1 Latent growth model of novel coronavirus ..................................38 1.9.2 Gauss–Markov Theorem (GMT) ..................................................................38 1.9.3 Maximum Likelihood Estimation (MLE) of Gauss–Markov Theorem (GMT) ..................................................................43 1.9.4 Gauss–Markov Weighted Least Squares Analysis ...................................44 1.10 Susceptible–Infective–Recovered (SIR) Epidemiological Model of COVID .......47 1.10.1 Model Formulation ........................................................................................49 1.10.2 SIR Model Discussion ...................................................................................50 1.11 EP Model with Varying Population .........................................................................52 1.11.1 Reproduction Number Approach to Binomial Distribution (R ) ............53 0 1.12 Machine Learning Model for SARS-Cov-19 ............................................................57 1.12.1 Machine Learning Model .............................................................................59 1.13 Models of Machine Learning ....................................................................................59 ( ) 1.13.1 Measurement Error u ..................................................................................60 ( ) 1.13.2 Stochastic Error u ........................................................................................60 1.13.3 Hidden Gauss–Markov Theorem (HGMT) ................................................62 1.14 COVID-19 Mathematical Model Approach to Selective Sample ..........................65 1.14.1 Model Formulation ........................................................................................66 1.15 Recommendations.......................................................................................................72 vii viii Contents 1.16 Study Limitations ........................................................................................................74 1.17 Conflict of Interest .......................................................................................................74 References ...............................................................................................................................74 2. Time Series Stochastic Projection Models for the Estimation of COVID Trend ....79 2.1 Introduction .................................................................................................................79 2.2 Time Series Stochastic Models ..................................................................................80 2.2.1 Exponential Smoothing by Bootstrap Techniques ....................................80 2.2.2 Holt–Winters (HW) Triple Exponential Smoothing Method ..................80 2.3 ARIMA Forecasting Model Approach to COVID Progression Estimation ........81 2.4 Model Discussion ........................................................................................................92 2.5 Conclusions ..................................................................................................................92 2.6 Random Walk Markov Chain Stochastic Transient (RMCST) Model .................92 2.7 Optimization of COVID Cases from Transition Matrix ........................................95 2.8 Model Diagnostic Test ................................................................................................96 2.9 Discussion ....................................................................................................................96 2.10 Conclusions ..................................................................................................................97 References ...............................................................................................................................98 3. Study of Anxiety and Fear of COVID-19 .......................................................................101 3.1 Introduction ...............................................................................................................101 3.2 Methods ......................................................................................................................102 3.3 Results .........................................................................................................................103 3.4 Discussion ..................................................................................................................111 3.5 Conclusions ................................................................................................................113 References .............................................................................................................................114 4. COVID-19 Gene Sequencing Modeling ........................................................................117 4.1 Introduction ...............................................................................................................117 4.2 Maxam and Gilbert Method ....................................................................................118 4.3 Sanger Sequencing ....................................................................................................118 4.3.1 Chain Termination PCR ..............................................................................119 4.3.2 Separation Based on Size Using Gel Electrophoresis .............................120 4.3.3 Analysis of Gel and Identification of DNA Sequence ............................120 4.4 Long-Read Sequencing Methods ............................................................................121 4.4.1 Single-Molecule Real-Time (SMRT) Sequencing .....................................122 4.4.2 Nanopore DNA Sequencing .......................................................................122 4.4.3 Merits of Nanopore DNA Sequencing ......................................................122 4.4.4 Massive Parallel Signature Sequencing (MPSS) ......................................123 4.4.5 Statistical Methods for Testing MPSS Data ..............................................125 4.5 Cauchy Distribution .................................................................................................126 4.6 Exponential Distribution .........................................................................................127 4.7 Gamma Distribution ................................................................................................128 4.8 Log-Normal Distribution .........................................................................................129 4.9 Logistic Distribution .................................................................................................131 4.10 Poisson Distribution .................................................................................................132 4.11 Weibull Distribution Model ....................................................................................133 4.12 Next-Generation Sequencing ..................................................................................134 4.13 Illumina Solexa Sequencing ....................................................................................134 4.13.1 Procedure for Illumina Sequencing ..........................................................136 Contents ix 4.14 Model Formulation ...................................................................................................140 4.15 Pyrosequencing .........................................................................................................144 4.16 Gene Sequencing Alignment ..................................................................................145 4.17 Alignment Parameters .............................................................................................146 4.18 COVID Sequencing ...................................................................................................146 4.19 Gene Alignment and Its Applications ...................................................................148 4.19.1 Global Alignment ........................................................................................148 4.19.2 Scoring Matrices ...........................................................................................149 4.20 Whole Genomic Analysis (WGA) ...........................................................................149 4.21 Discussion ..................................................................................................................155 4.22 Conclusions ................................................................................................................158 References .............................................................................................................................158 5. Real-Time PCR (RT-PCR) for COVID-19 Diagnosis and Changes in Threshold Cycle (C) in Association with Different Parameters ..............................163 t 5.1 Introduction ...............................................................................................................163 5.2 A High Threshold Value of C in COVID-19..........................................................165 t 5.3 Model Formulation ...................................................................................................166 5.4 Model Output ............................................................................................................168 5.5 Discussion ..................................................................................................................171 5.6 Conclusions ................................................................................................................172 References .............................................................................................................................173 6. COVID-19 Vaccination Modeling Approach to Public Health Policy .....................175 6.1 Introduction ...............................................................................................................175 6.2 What Else Does a Vaccine Contain? .......................................................................177 6.3 Model Formulation—Need for Model Formulation ............................................178 6.4 Methods ......................................................................................................................179 6.5 Determination of Vaccination Effects by Statistical Tools or Methods .............184 6.6 Herd Immunity .........................................................................................................184 6.7 COVID Vaccination Predictive Statistical Models ................................................194 6.8 Model Construction ..................................................................................................195 6.9 Projection Modeling of COVID Vaccination .........................................................205 6.10 Model Output ............................................................................................................206 6.11 Real Probability of Bayes for Estimation of Vaccination Effect .........................209 6.12 Bayes Stochastic Vaccination Model .......................................................................210 6.13 Discussion ..................................................................................................................212 6.14 Conclusions ................................................................................................................215 6.15 Recommendations.....................................................................................................215 References .............................................................................................................................215 7. Trend of COVID-19 Surge Projection ............................................................................217 7.1 Introduction ...............................................................................................................217 7.2 Model Construction ..................................................................................................220 7.3 Bayes Weighted Regression Model .........................................................................221 7.4 Model Results ............................................................................................................226 7.4.1 Projective Model of the Third Wave by Using I Score ..........................231 A 7.4.2 Calculation Summary .................................................................................231 7.5 Discussion ..................................................................................................................232 7.6 Conclusions ................................................................................................................234 References .............................................................................................................................235