ebook img

Counting with Symmetric Functions PDF

297 Pages·2015·3.653 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Counting with Symmetric Functions

Developments in Mathematics Anthony Mendes Jeffrey Remmel Counting with Symmetric Functions Developments in Mathematics VOLUME43 SeriesEditors: KrishnaswamiAlladi,UniversityofFlorida,Gainesville,FL,USA HershelM.Farkas,HebrewUniversityofJerusalem,Jerusalem,Israel Moreinformationaboutthisseriesathttp://www.springer.com/series/5834 Anthony Mendes • Jeffrey Remmel Counting with Symmetric Functions 123 AnthonyMendes JeffreyRemmel MathematicsDepartment DepartmentofMathematics CaliforniaPolytechnicStateUniversity UniversityofCaliforniaatSanDiego SanLuisObispo,CA,USA LaJolla,CA,USA ISSN1389-2177 ISSN2197-795X (electronic) DevelopmentsinMathematics ISBN978-3-319-23617-9 ISBN978-3-319-23618-6 (eBook) DOI10.1007/978-3-319-23618-6 LibraryofCongressControlNumber:2015953218 MathematicsSubjectClassification(2010):05A05,05E05,05A15,05A19,05E18 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www. springer.com) Preface Thisbookisabouthowsymmetricfunctionscanbeusedinenumeration.Thedevel- opmentisentirelyself-contained,includinganextensiveintroductiontotheringof symmetricfunctions.Manyoftheproofsarecombinatorialandinvolvebijectionsor sign-reversinginvolutions.Therearenumerousexerciseswithfullsolutions,many ofwhichhighlightinterestingmathematicalgems. The intended audience is graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetricfunctions.Themathematicalprerequisitesarerelativelylow;weassume the readers possess a knowledge of elementary combinatorics and linear algebra. Weusethebasicideasofgrouptheoryandringtheorysparinglyinthebook,using themmostlyinChapter6. Chapter 1 introduces fundamental combinatorial objects such as permutations and integer partitions. Statistics on permutations an(cid:2)d(cid:3)rearrangements are defined andrelationshipsbetweenq-analoguesofn,n!,and n aregiven,astheseareused k inlaterchapters.Wealsoprovideanintroductiontogeneratingfunctions.Muchof thematerialinthisintroductorychapterisclassic. SymmetricfunctionsareintroducedinChapter2.Ourdevelopmentemphasizes thecombinatoricsofthetransitionmatricesbetweenbasesofsymmetricfunctions in a way that cannot be found elsewhere. Readers may find this approach more accessiblethanthoseinotherbooksthatdiscusssymmetricfunctions.Thismaterial isessentialtounderstandingthelaterchaptersinthebook;afterall,thisbookisall abouthowtousetherelationshipsbetweensymmetricfunctionstosolvecounting problems. One of the major ideas this book highlights is that ring homomorphisms ap- plied to the ring of symmetric functions can be used to find interesting generating functions.ThisisfirstappliedinChapter3,whereweusethebackgroundmaterial introduced in Chapters 1 and 2 to find an assortment of generating functions for permutation statistics. We are able to count and refine permutations according to restrictedappearancesofdescentsandproveanumberofresultsaboutwords. v vi Preface InChapter4,thetechniquesintroducedinChapter3areextendedtofindgener- atingfunctionsforavarietyofobjects.Theexponentialformulaandthegenerating functionsderivedfromlinearrecurrenceequationscanbefoundwiththemethods introducedinChapter4. The Robinson-Schensted-Knuth algorithm is presented in Chapter 5, an impor- tantalgorithmwhichneedstobeincludedinanybookonsymmetricfunctionsand enumeration.Connectionsaremadetoincreasingsubsequencesinpermutationsand words and the Schur symmetric functions. A q-analogue of the celebrated hook lengthformulaisproved. Symmetric functions are used to prove Po´lya’s enumeration theorem in Chap- ter 6, allowing us to count objects modulo symmetries. This is a standard topic in manycoursesoncombinatorics,buttoooftenitisnotmadeclearthatPo´lya’senu- meration theorem can be properly phrased using the language of symmetric func- tions. We also give a new combinatorial proof of the Murnaghan-Nakayama rule fromthePierirules. Chapters7and8aremorespecializedchaptersthantheothers,andmayappeal to researchers in this area. In Chapter 7 we study consecutive pattern matches in permutations,words,cycles,andalternatingpermutations.Chapter8introducesthe reciprocitymethod,anapproachwhichcanprovideawaytodefineringhomomor- phismswithdesirableproperties. MostoftheresultsandexercisesfoundinChapters3,4,7,and8areappearing inbookformforthefirsttime. Thechapterdependencychartforthetextisasfollows: Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 4 Chapter 6 Chapter 7 Chapter 8 Anthony Mendes thanks Jeff Remmel for introducing him to some wonder- ful mathematics and for working with him over the years. He thanks all students who took Math 435 or Math 530 in the fall of 2014 at Cal Poly San Luis Obispo for carefully reading a preliminary copy of this text. Thanks also go to the fol- lowing people who pointed out at least one typographical error or suggested a specific improvement to the text: Shelby Burnett, Maggie Conley, Saba Gerami, MikeLaMartina,AmandaLombard,ThomasStienke,andThomasJ.Taylor.Most Preface vii importantly,AnthonyMendesthankshiswifeAmyanddaughtersAva,Tabitha,and Rubyfortheirsupport. JeffRemmelwouldliketothankAdrianoGarsia,DomiqueFoata,andIanMac- donald who introduced him to the theory of symmetric functions and enumerative combinatorics. He also thanks the following Ph.D. students who helped him over theyearstodeveloppartsofthetheorypresentedinthisbook:TamsenWhitehead, Diseree Beck, Tom Langley, Jennifer Wagner, Tony Mendes, Amanda Riehl, Jeff Liese,EvanFuller,AndyNiedermaier,AndreHarmse,MilesJones,AdrianDuane andQuangBach.Finally,hethankshisfamilymembers,especiallyhiswifePaula, fortheircontinuingsupportwhichmadehisresearchcareerpossible. SanLuisObispo,CA,USA AnthonyMendes SanDiego,CA,USA JeffreyRemmel July2015 Contents 1 Permutations,Partitions,andPowerSeries ....................... 1 1.1 PermutationsandRearrangements ............................ 1 1.2 IntegerPartitionsandTableaux ............................... 8 1.3 GeneratingFunctions ....................................... 12 Exercises ...................................................... 19 Solutions ...................................................... 22 Notes ......................................................... 30 2 SymmetricFunctions ........................................... 33 2.1 StandardBasesforSymmetricFunctions....................... 33 2.2 RelationshipsBetweenBasesforSymmetricFunctions........... 42 2.3 TransitionMatrices ......................................... 47 2.4 AScalarProduct ........................................... 56 2.5 TheωTransformation ...................................... 60 Exercises ...................................................... 66 Solutions ...................................................... 69 Notes ......................................................... 77 3 Counting with the Elementary and Homogeneous Symmetric Functions ..................................................... 79 3.1 CountingDescents ......................................... 79 3.2 ChangingBrickLabels...................................... 89 Exercises ......................................................101 Solutions ......................................................106 Notes .........................................................119 4 CountingwithNonstandardBases ...............................121 4.1 TheBasis pν,λ.............................................121 4.2 CountingwiththeElementaryand pν,n ........................123 4.3 Recurrences ...............................................129 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.