ebook img

Counting Cats: Spatially Explicit Population Estimates of Cheetah PDF

15 Pages·2016·1.19 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Counting Cats: Spatially Explicit Population Estimates of Cheetah

RESEARCHARTICLE Counting Cats: Spatially Explicit Population Acinonyx jubatus Estimates of Cheetah ( ) Using Unstructured Sampling Data FemkeBroekhuis1,2*,ArjunM.Gopalaswamy3,4 1 MaraCheetahProject,KenyaWildlifeTrust,Nairobi,Kenya,2 WildlifeConservationResearchUnit, DepartmentofZoology,UniversityofOxford,Recanati-KaplanCentre,Tubney,UnitedKingdom, 3 DepartmentofZoology,UniversityofOxford,Oxford,UnitedKingdom,4 StatisticsandMathematicsUnit, IndianStatisticalInstitute–Bangalorecentre,Bengaluru,India *[email protected] a11111 Abstract Manyecologicaltheoriesandspeciesconservationprogrammesrelyonaccurateestimates ofpopulationdensity.Accuratedensityestimation,especiallyforspeciesfacingrapid declines,requirestheapplicationofrigorousfieldandanalyticalmethods.However,obtain- OPENACCESS ingaccuratedensityestimatesofcarnivorescanbechallengingascarnivoresnaturally Citation:BroekhuisF,GopalaswamyAM(2016) existatrelativelylowdensitiesandareoftenelusiveandwide-ranging.Inthisstudy,we CountingCats:SpatiallyExplicitPopulationEstimates employanunstructuredspatialsamplingfielddesignalongwithaBayesiansex-specific ofCheetah(Acinonyxjubatus)UsingUnstructured SamplingData.PLoSONE11(5):e0153875. spatiallyexplicitcapture-recapture(SECR)analysis,toprovidethefirstrigorouspopulation doi:10.1371/journal.pone.0153875 densityestimatesofcheetahs(Acinonyxjubatus)intheMaasaiMara,Kenya.Weestimate Editor:MarcoFesta-Bianchet,Universitéde adultcheetahdensitytobebetween1.28±0.315and1.34±0.337individuals/100km2 Sherbrooke,CANADA acrossfourcandidatemodelsspecifiedinouranalysis.Ourspatiallyexplicitapproach Received:January18,2016 revealed‘hotspots’ofcheetahdensity,highlightingthatcheetaharedistributedheteroge- neouslyacrossthelandscape.TheSECRmodelsincorporatedamovementrangeparame- Accepted:April5,2016 terwhichindicatedthatmalecheetahmovedfourtimesasmuchasfemales,possibly Published:May2,2016 becausefemalemovementwasrestrictedbytheirreproductivestatusand/orthespatialdis- Copyright:©2016Broekhuis,Gopalaswamy.Thisis tributionofprey.WeshowthatSECRcanbeusedforspatiallyunstructureddatatosuc- anopenaccessarticledistributedunderthetermsof cessfullycharacterisethespatialdistributionofalowdensityspeciesandalsoestimate theCreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and populationdensitywhensamplesizeissmall.Oursamplingandmodellingframeworkwill reproductioninanymedium,providedtheoriginal helpdeterminespatialandtemporalvariationincheetahdensities,providingafoundation authorandsourcearecredited. fortheirconservationandmanagement.Basedonourresultsweencourageother DataAvailabilityStatement:Allrelevantdataare researcherstoadoptasimilarapproachinestimatingdensitiesofindividuallyrecognisable availablefromtheDyradDigitalRepository species. (accessionnumberdoi:10.5061/dryad.fc324). Funding:Thisstudywasfundedthroughvarious privatedonorsandfoundationswhodonatedthrough theKenyaWildlifeTrust.Thefunderhadnorolein studydesign,datacollectionandanalysis,decisionto Introduction publish,orpreparationofthemanuscript. Obtainingaccurateestimatesofdensitiesiscentraltoourunderstandingofthespatio-temporal CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. dynamicsofanimalpopulationsandprovidesthefoundationforeffectivewildlifemanagement PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 1/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah andconservation.Thisisespeciallythecaseforlargecarnivoresasmanyspecieshaveunder- gonedrasticdeclinesoverthelastfewdecades[1].However,obtainingaccuratedensityesti- matesofcarnivorescanbechallengingascarnivoresnaturallyexistatrelativelylowdensities andareoftenelusiveandwide-ranging[2].Asaresult,carnivorepopulationsarenotalways monitoredusingrigorousmethods.Forexample,indirectmethodssuchasspoorsurveysare commonlyusedtoestimatedensities[3,4].Tominimisecostandresources,suchsurveysare commonlyconductedwithinarelativelysmallareaandthenextrapolatedacrossamuchlarger areausingindex-calibrationmethods.However,thisapproachisinaccurateasthevariationsof detectionprobabilityareleftunaccountedfor[5].Asaresult,populationestimatescouldbe over-orunderestimated,misdirectingconservationefforts.Inlightoftheconsequencesof theseinaccuraciesitisbeingrecognisedthatmorerobustwaysofestimatingpopulation parametersarerequired[6]. Overthelastcoupleofdecades,photographiccapture-recapturemethods[7]havebeen widelyusedincamera-trappingstudiestoestimatedensitiesofvariouslargefelids,including tigers(Pantheratigris[8]),snowleopards(P.uncia[9])andjaguars(P.onca[10]).Inrecent times,basiccapture-recapturemethods[11]havebeenreplacedbyspatiallyexplicitcapture- recapturemethods(SECR[12,13])forestimatinganimaldensitiesof`marked’animals, wherein,spatiallocationsofeach‘capture’areexplicitlyaccountedforinthemodelling.This hasbeenamajoradvancementasnotonlycandensitiesbeaccuratelyestimatedacrossan entirelandscape,butwithin-patchvariationindensitiescanbeestimatedandcanbesuitably modelledwithcovariatesofinterest(e.g.[9]).ThepoweroftheSECRapproachhasledtoan explosivegrowthofspatialcapture-recapturemethodologies(see[14]foravarietyofmodels andpotentialvariants).Forexample,SECRmodelsweretraditionallythedomainofstructured studydesignssuchascameratraparraysbutarenowadaptedtounstructuredsamplingdesigns suchassearch-encounterdata[15,16].Thisisanimportantdevelopmentsincealthoughstruc- turedcamera-trapstudydesignsworkwellforspeciesinforestsanddensehabitats,whereani- malsgenerallyusewell-definedtrails,theyarenotnecessarilysuitedtospeciessuchasthe cheetah(Acinonyxjubatus)thatresideinopenhabitatswherecamera-trappingislikelyto yieldverylowtrappingratesleadingtopoorinferences[17]. Ithasbeenguesstimatedthatthereareapproximately6,600adultcheetahleftontheAfrican continentandthatthisnumberiscontinuingtodecline[18].Extinctin20countriesandoccu- pyingonly17%oftheirhistoricrange,cheetahsarevulnerabletoextinctionandinserious needofconservationefforts[1].Whilstaccuratedensityestimatesarecrucialforconservation effortstobesuccessful,thesearenotalwaysavailable.Forexample,Kenyaisconsideredtobea criticalpartoftheglobalcheetahdistributionbuttherearecurrentlynoaccuratecheetahpopu- lationdensityestimatesinanyareainthecountry[19,20].WithinKenya,theMaasaiMara, whichispartofalargerMara-Serengetitransboundaryregion,isbelievedtoholdoneofthe country’smaincheetahpopulations.TheMaasaiMaraisrenownedforitsannualmigrationof wildebeest(Connochaetestaurinus)andhighdensitiesofpredatorsbut,likemanylandscapes aroundtheworld,itisunderincreasinganthropogenicpressure.Kenya’spopulationisnow over41.8million,overthreetimeswhatitwasin1970[21].IntheMaasaiMara,settlements, andthereforealsolivestock,areincreasingatarapidrate[22].Asaresult,thisareahasseen significantdeclinesinherbivorenumbers,somespeciesdownbyathird,inthelastfewdecades [23].WhilethereareconcernsthatthecheetahpopulationintheMaasaiMaraisfacingsimilar declines,therearenoaccuratepopulationestimatestosupportthisortodeterminefuturepop- ulationtrends.Inthisstudy,weaimtoprovidethefirstrigorousestimateofthecheetahpopu- lationintheMaasaiMaraNationalReserveandthesurroundingwildlifeconservanciesusinga sex-specificSECRmodellingapproachbasedonfieldsamplingviadirectsightingsofindivid- ualcheetahusinganunstructuredspatialsamplingdesign. PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 2/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah Methods EthicsStatement Dataforthisstudywerecollectedusingnon-invasivemethodsandthereforeapprovalfroman ethicscommitteewasnotrequired.PermitsforthisstudywereissuedtoFemkeBroekhuisby theNationalCouncilforScienceandTechnology(NACOSTI),KenyaWildlifeService(KWS), NarokCountyGovernment(NCG),theMaasaiMaraWildlifeConservanciesAssociation (MMWCA)andtheMaraConservancy. Studyarea ThesurveywasconductedintheMaasaiMaralocatedintheSouth-westofKenya.Thestudy area(centredat°1S,35°E;elevationc.1700m)coversapproximately2398km2whichincludes theMaasaiMaraNationalReserve(MMNR),whichfallsundertheauthorityoftheNarok CountyGovernment,andtheadjacentconservancies;MaraTriangle,MaraNorth,OlChurro, Lemek,Olare-Motorogi,NaboishoandOlKinyeiwhicharemanagedbyprivatemanagement companies(Fig1).TherearenophysicalbarriersbetweentheMMNRandtheconservancies orbetweenthewildlifeareasandthesurroundingcommunityareas,allowingforfreemove- mentofanimals.Hereafter,theMMNRandtheadjacentconservancieswillcollectivelybe referredtoastheMaasaiMara.TothesouththeMaasaiMaraborderstheSerengetiNational ParkinTanzania,tothenorthandwestitbordersintensiveagriculturallandandeastofthe MaasaiMaraislargelypastoralistsettlement[24,25]. Thestudyareaexperiencesabimodalrainfallpattern,withthewetseasonspanningNovem- ber–JuneandthedryseasonJuly–October.Thewetseasonischaracterisedbytwodistinctperiods; theshortrains(November–December)andthelongrains(MarchtoJune)[26].Thelongrains attractthemigratingwildebeest,Commonzebra(Equusburchelli)andThomson’sgazelle(Gazella thomsoni)fromtheSerengeti.GenerallythemigrationreachestheNorthernSerengetiinJuly,and thenspendsAugust,SeptemberandOctoberintheMaasaiMarabeforereturningtoTanzaniain November[27,28].Independentofthemigration,substantialpopulationsofThomson’sgazelle— cheetahspreferredpreyinEastAfrica[29]—areresidentyearroundasareotherpreyspeciessuch asGrant’sgazelle(G.granti),impala(Aepycerosmelampus)andhares(Lepusspp.)[28,30]. Fieldmethods Anintensivecheetahsurveywasconductedduringathree-monthperiodfrom1stAugust2014 to31stOctober2014.Basedonotherstudies,webelievethatthiswasshortenoughsonottoseri- ouslyviolatetheassumptionofclosurebutlongenoughtocollectsufficientdata[9,17,31].The surveyinvolvedamaximumoffivevehiclestravelingwithinthestudyareawiththeobjectiveof adequatelycoveringtheentirestudyareaspatially.Whenevercheetahsweresighted,photographs ofeachindividualweretakenandthenumberofindividuals,GPSlocation,dateandtimeofday wererecorded.Inadditiontorecordingopportunisticsightingsofcheetahsduringsampling,we alsomadeuseofinformationoncheetahlocationsprovidedbytourists,guidesandrangers,so thatourfieldteamswoulddrivetothelocationandphoto-capturecheetahs.Samplingeffort (GPStracks)andcheetahsightingswererecordedusinganapplicationbuiltinCybertrackerv3 [32].Toaccountforsearcheffort,GPSlocationswererecordedevery10secondsgivingadetailed recordoftheareasthatwerecoveredinsearchofcheetahs(Fig2).Wheneverpossible,routes travelledwerenotusedmorethanonceadaytoensurethatcheetahswerenotsightedmultiple timespersamplingoccasion.Eachcheetahwasidentifiedaccordingtotheiruniquespotpattern [33].Onlyindependent,adultcheetahwereusedfortheanalysisandinthecaseofmalecoali- tionseachindividualwasconsideredtobeindependentintheanalysis. PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 3/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah Fig1.MapofthestudyareainSouth-westKenya(darkgrey)borderingSerengetiNationalParkinTanzania(lightgrey). doi:10.1371/journal.pone.0153875.g001 Analyticalmethods CheetahdensitiesintheMaasaiMarawereestimatedusingaBayesianspatiallyexplicitcap- ture-recapturemodeladaptedtosearch-encounterdataandsexdifferencesinencounterprob- ability[34].ThedefinitionsoftheparametersusedfortheanalysescanbefoundinTable1and detailsontheinputvariablesaredescribedinmoredetail: PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 4/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 5/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah Fig2.MapoftheMaasaiMaraincludingthesamplingeffort(tracksdriven)insearchofcheetahandthestatespace. doi:10.1371/journal.pone.0153875.g002 Statespace. ThelargestatespaceSwasdefinedasthestudyareawithabufferof40km resultinginanareaof20,370km2(Fig2).Allhabitatswereconsideredsuitableapartfrom intenseagriculturalareastowardsthenorthandwestofthestudyareaandlarge,denselypopu- latedtowns[24].Unsuitablehabitataccountedfor42.58%(8673.54km2)withinthestatespace whichwasmaskedoutfromtheanalysis[13,35].Thestatespacewasrepresentedindiscrete 650x650m(0.422km2)pixels. Weassumedthat,duringthethree-monthsamplingperiod,nocheetahoutsidethislarge statespacewouldbedetectedwithinthesamplingarea.Whilethemaximumdistancethatwas coveredbyatwo-malecoalitionwas41kmwebelievethistobeareasonableassumptionasthe calculatedMeanMaximumDistanceMovedduringthisperiodforallcheetahsightedwas 6.91km.Thiswasfurthersupportedbythefactthatphotographsreceivedofcheetahsinnearby areas,butoutsidethisbuffer,werenotofindividualsthatwereseenwithinthedefinedsam- plingareaoveratwoyearperiod.Withinthelargestatespacethedata-augmentedvalueof cheetahabundanceMwassetat335(n=25andn =310;seeTable1fordefinitionsofparam- z eters).Thisrepresentsthemaximumnumberofcheetahspossiblewithinthestatespace,keep- inginmindthatourexpectationforanestimateofthetruenumberofindividualsinthe populationcomparedtothedata-augmentedpopulationM,ψ,willliewithintherange0.2–0.8 forreliableestimationofthebinomialproportion[36]. ½N jM;c(cid:2)(cid:3)Bin½M;c(cid:2) super Observationprocess. Thedatacollectedweresummarisedusingastandardspatialcap- ture-recapture3-dimensionalmatrix(see[35]forafullexample)thatconsistsofindividuals Table1. Parametersusedinthesexspecificspatiallyexplicitcapture-recaptureanalysisforcheetah intheMaasaiMara,Kenya Parameter Definition n Totalnumberofcheetahsightedduringthesamplingperiod. nz Numberofcheetahaugmentedton,sothatM=n+nzrepresentsthemaximumnumberof cheetahsinthelargestatespaceS. σF Rateofdeclineindetectionprobabilityasafemalecheetah’sactivitycentreincreasesasa functionofherdistancefromthecentroidofagridcell(ortrap). σM Rateofdeclineindetectionprobabilityasamalecheetah'sactivitycentreincreasesasa functionofhisdistancefromthecentroidofagridcell(ortrap). βsex Differenceinthecomplementarylog-logvalueofdetectionprobabilitybetweenamaleand femalecheetah. βeff Rateofchangeinthecomplementarylog-logvalueofdetectionprobability,asthelog(effort) changesbyoneunit.Here,unitofeffortisonekilometredriven. λ0 Basalencounterrateofacheetahwhoseactivitycentreislocatedexactlyatthecentroidofa gridcell. ψ Ratioofthetruenumberofindividualsinthepopulationcomparedtothedataaugmented populationM. ψsex Proportionofcheetahthataremale.Sexratio=1(cid:4)ccsesxexfemales:males Nsuper TotalnumberofcheetahinthelargerstatespaceS. W Determinestheshapeoftheestimateddetectionfunction.ThevalueofWrangesfrom0.5 (Exponential)to1(Gaussian). D Estimateddensityofadultcheetah/100km2 doi:10.1371/journal.pone.0153875.t001 PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 6/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah (i=1;2;3:::N),xtraplocations(j=1;2;3:::J)andxsamplingoccasions(k=1;2;3:::K). Thisisastandardmatrixusedforspatialcapture-recapturedataforcameratrapsurveyswhich canbeadjustedforunstructuredspatialcapture-recapturesampling[15,34].Inthiscase,the traplocationsweredefinedby1km2pixelstorepresentanarrayof‘traps’.Thesamplingocca- sion,or‘trapactivity’,wasbasedonwhetheragivenpixelwassurveyedonanyparticularday. However,sinceinvestingmoreeffortincertainpixelsovertheotherscouldyieldahighernum- berofdetectionsinhighlysampledpixels,weincorporatedanadditionalcovariateofsearch effort(logarithmofthedistancetravelledinkilometres)perpixelpersamplingoccasion.In addition,weincorporatedsex-specificcovariates(female=0andmale=1)asithasbeen shownthatsexdifferencesinspatialdistributionarelikelytoinfluencetheobservationprocess inspatialcapture-recapturemodels[10].Thisisespeciallytrueforcarnivoreswheremalesand femalestendtohavedifferenthomerangesizes[37,38]. Spatialcapture-recapturemodelsemployavarietyofdetectionfunctionmodels[16,39]to definethemechanismofthedeclineindetectionprobabilityasthedistancebetweentheactiv- itycentreofananimalfromatraplocation(inourcase,thecentroidofapixel)increases. Ratherthanexplicitlytestingvariousdetectionfunctionmodels,weconsideraninfinitenum- berofpossibilitiesbetweenaperfectnegativeexponentialdetectionfunctiontoaperfect Gaussiandetectionfunction[13]byexplicitlyestimatingtheparameterϑ.Avalueofϑ=0.5 specifiesaperfectnegativeexponentialfunctionwhichwouldindicatethatananimal’sactivity isconcentratedarounditsactivitycentrewhichisindicativeofincreasedfidelitytotheactivity centre.Avalueofϑ=1specifiesaperfectGaussianfunctionwhichwouldindicatethatanani- mal’sactivityismorewidespreadandlessconcentratedinaparticularareawhichmaybechar- acteristicofanimalsthathavehome-rangeswithalesserdegreeoffidelitytotheactivitycentre. Thus,theparameterϑdefinestheshapeofthedetectionfunction,andisindicativeofthe resourceutilisationmechanismofcheetahsinourexample.Hence,theprobabilityofdetecting acheetahi,insamplingoccasionkatpixelj,π ,isdefinedbyacomplementarylog-logfunc- ijk tionofcovariates.Basedonthis,thefullmodelis:cloglog(π )=logλ +β [log(EFFORT )]+ ijk 0 eff jk β (SEX)-f[dist(i,j|ϑ,σ )] sex sex Bayesianmodels. Thefollowingfourapriorimodelsweredefined: Model1:Fullmodelthatassumesdetectionprobabilityissex-specificandthedetection functionshapeisestimated(definedbyϑ). ½b ;Wð:Þ(cid:2) sex Model2:Assumesdetectionprobabilityisnotafunctionofsex.However,rateofdeclinein detectionprobabilityσremainssex-specific,sincethisparameterisalsorelatedtoanimal movement. ½b ¼0ðfixedÞ;Wð:Þ(cid:2) sex Model3:Detectionprobabilitydoesnotvarybetweensexanddetectionfunctionshape, definedbyϑ,isfixedatacertainvalue(implyingafixedhybridmodelbetweenaGaussianand anegativeexponentialdetectionfunction). ½b ¼0ðfixedÞ;W¼0:75ðfixedÞ(cid:2) sex Model4:Detectionprobabilityissex-specificbuttheshapeofthedetectionfunctionisfixed. ½b ;W¼0:75(cid:2) sex ThesefouraprioriBayesianSECRmodelswereimplementedusinganadaptationofthe packageSCRbayes(https://github.com/jaroyle/SCRbayes)intheprogrammingenvironmentR PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 7/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah [40].ThemodelswereimplementedusingtheBayesianMarkovChainMonteCarle(MCMC) simulationusingtheMetropolis-Hastingsalgorithm[41].TheMCMCchainconvergenceforall themodelswasassessedusingtheGelman-Rubindiagnostic[42].Eachmodelwassetfor11,000 iterationswithaburn-inperiodof1,000iterations.Theburn-inperiodwasrefinedduringlater stagesofananalysisiftherewasevidencefromthediagnosticsthatthemodelhadnotarrivedat astationarydistributionbythen.Asaresulttherewere4000–5000posteriorsamplesforeach chain.Atotalofeightchainswererunforeachmodel.Foreachmodel,aBeta(1,1)priorwas usedforψ.Thispriorisintendedtobeuninformative,whichiswhywemadesurethatMwas largeenoughsothattheestimateofψwasmuchlessthan1.Wethereforebelievethattheprob- lemofapotentiallytruncatedposterior,asobservedinLink[43],doesnotapplyinourcase.In addition,allthecoefficientsinthelinearpredictorhadimproperflatpriorson[-1;1]fora suitabletransformationoftheparameter.Theinterceptwasln(λ ),whereλ wastheexpected 0 0 numberofcapturesofasingleanimalinasingletraponasinglecaptureoccasion,whenthedis- tancebetweenthetrapandthecentreoftheanimal'shomerangeiszero.Thistranslated,there- fore,intoimpliedscalepriorsforλ andβ .TheϑhadaUniform(0.5,1)priortofacilitatethe 0 effort shapeoftheresourceselectionfunctiontohaveanequalprobabilitytobeanyformbetweena half-normalandanegativeexponentialdetectionfunction.AflatUniform[0,1]priorwasused forσandactivitycentreshaduniformpriors,sothatallpixels(potentialhome-rangecentres) withsuitablehabitathadanequalprobabilityofhostingahome-rangecentrewhereaspixelswith unsuitablehabitathadzeroprobabilityofhostingahome-rangecentre.Eachmodelwassubse- quentlycheckedforadequacyutilisingtheBayesianp-valueassessmentusingateststatistic basedonindividualencountersasimplementedinRoyleetal.[13].Parameterestimatesare reportedtogetherwiththeposteriorstandarddeviations. Results Theresultsofthefourmodelspredictthatthedensityforcheetahsinsuitablehabitatwithin theMaasaiMaralandscapeliesbetween1.28±0.315and1.34±0.337adults/100km2.These resultsarebasedon59sightingsof25individuals(ninemalesweresightedon25occasions and16femalesweresightedon34occasions)thatweresightedoveraninvestedsampling effortof8397kmduringathree-monthperiod.Thenumberofsightingsperindividualranged fromonetosevenandthebasalencounterrate(λ ),implyingthattheprobabilityofsightinga 0 cheetahperkilometredriven=1-exp(-λ ),was0.004. 0 Theanalysisprovidesestimatesforvariousotherparameters,includingasexratioof approximatelyfivefemalestoeveryonemale.Therewashoweverahighsamplingcovariance betweendensity(D)andthesexratio(ψ )asevidentfrompairwisecovarianceplotsof sex parametersfromtheMCMCoutput.Theestimateddetectionfunction(ϑ)wascloserto1than to0.5indicatingthattheshapewasclosertoGaussianratherthananegativeexponential.Fig3 depictstheexpectedpixel-specificposteriordensitiesandshowstheheterogeneousdistribution ofcheetahwithinthelandscape.Theexpectednumberofcheetah/km2perpixelrangedfrom 0.001to0.037showingclear‘hotspot’areasforcheetah. Theposteriormeanestimatesalongwithposteriorstandarddeviationsoftheseestimatesof theparametersforModels1–4andtheGelman-RubinstatisticarereportedinTable2.The Bayesianp-valueestimatesforallthemodelsarebetween0.67–0.69indicatingthatallthemod- elswereadequate,asthevaluesliewellwithintheextremities(0.15–0.85). Discussion Theresultsindicatethatsex-specificSECRmodelsforunstructuredspatialsamplingcanbe usedsuccessfullytoestimatepopulationparametersforlowdensityspeciesthatresideinopen PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 8/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah Fig3.MapoftheestimatedposteriordensityofcheetahintheMaasaiMara,Kenyaforeach0.422km2pixelfortheperiodbetween1stAugustand 31stOctober2014.Thecheetahdensity/km2perpixelrangedfrom0.001(darkblue)to0.037(red). doi:10.1371/journal.pone.0153875.g003 habitats.Thisisespeciallythecasewhencoveringalargeareainashortperiodoftimesoasto minimiseviolatingtheassumptionofaclosedsystem.Whiletheposteriorvariancesofthe expecteddensityestimatesarerelativelyhigh,thisisaninherentproblemwhensamplesizes aresmall.Inthepast,cheetahdensitieshavebeenestimatedusingbothindirectsurvey PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 9/15 CountingCats:SpatiallyExplicitPopulationEstimateofCheetah Table2. PosteriorestimatesofparametersforModels1–4includingtheposteriorstandarddeviation(PSD). Density(D)isgivenasnumberofadult cheetah/100km2 Model Model1[βsex,θ(.)] Model2[βsex=0(fixed), Model3[βsex=0(fixed), Model4[βsex,θ=0.75 θ(.)] θ=0.75(fixed)] (fixed)] Numberofposteriorsamplesused 4000 5000 5000 5000 Maximumvalueofpotentialreduction 1.18 1.12 1.11 1.13 factor BayesianP-value 0.6729 0.6838 0.6767 0.6732 Parameter Posterior PSD Posterior PSD Posterior PSD Posterior PSD mean mean mean mean σF 3.660 1.272 3.300 1.241 2.740 0.331 2.690 0.303 σM 8.130 3.589 7.460 3.814 5.330 0.748 5.810 1.337 βsex -0.120 0.531 - - - - -0.140 0.596 βeff -0.009 0.012 -0.009 0.012 -0.009 0.012 -0.009 0.013 λ0 0.004 0.002 0.004 0.002 0.004 0.001 0.004 0.002 ψ 0.450 0.112 0.460 0.116 0.450 0.111 0.469 0.120 ψsex 0.162 0.073 0.146 0.068 0.159 0.071 0.146 0.700 Nsuper 149.800 36.780 153.100 37.960 151.14 36.352 157.160 39.390 ϑ 0.831 0.127 0.792 0.134 - - - - D 1.28 0.315 1.33 0.326 1.29 0.311 1.34 0.337 doi:10.1371/journal.pone.0153875.t002 methodssuchasinterviews[44]andspoorsurveys[3]butthesetechniqueshavetheirlimita- tions.Withbothmethodsthereistheuncertaintyassociatedwiththemisidentificationofchee- tahandtheirspoor,especiallyastheyareoftenconfusedwithleopard(P.pardus)and thereforeestimatesbasedonindirectmethodsmightbemisrepresentative.Evenwithoutmis- identificationerrorstheseapproachescanbehighlyinaccurate,especiallywhendetectionprob- abilitiesarelowandvaryingduetoahighamountofoverdispersion[5].Asaresult,changesin populationestimatescannotbeaccuratelyestimated,consequentlymisdirectingconservation decisions.Inlightoftheseinaccuraciesitisincreasinglyrecognisedthatecologistsmust embraceuniversallyrobustmethodsthatexplicitlyrecognisetheimportanceofestimating detectionprobabilities[6]. Capture-recapturemodelsthattakeintoaccountdetectionprobability,havebeenusedin camera-trapstudiestoestimatecheetahdensitiesinAlgeria[45],Namibia[46],SouthAfrica [47]andBotswana[17,48].Cheetah,however,occuratlowdensitiesandtraverselargeareas soinareaswithopenhabitats,cameratrappingmethodsarelikelytoyieldverylowtrapping ratesandtheresultingestimatesofparametersarelikelytohavehighsamplingvariancesand covariances.Furthermore,whilecamera-trapstudiesarefeasibleforsmallareaslikethosein Botswana(240km2[17]),Namibia(277km2[46])andSouthAfrica(300km2[47]),largerareas arelogisticallydifficulttomaintain,costlyand,iftheadjacentblockmethodisused,arelikely tobeconfoundedbyspatialandtemporalvariation[49].Inaddition,thementionedstudies usedbasiccapture-recapturemodelsthatdonotaccountforvariabletrapeffort(inevitablein fieldsampling)orforthespatialarrangementofindividuals[13],whichoftenleadstoan upwardsbiasindensityestimates(see[9,14]). Generallyinlargecarnivores,malesandfemalesdifferinrangingbehaviourandhence detectionrateislikelytodifferbetweensexes[37].Insuchcircumstancesestimatescanbe improvedbyaccountingforsex[10].Moreover,byincludingsexasaparameter,thesexratio andsex-specificmovementparametersofthepopulationcanbedetermined.Forcheetahthe sexratioatbirthtendstobeequal[50]butadultfemaleshaveahigherchanceofsurvivalthan malesandintheSerengetiNationalParkinTanzaniatheadultsexratiowasfoundtobe0.8 PLOSONE|DOI:10.1371/journal.pone.0153875 May2,2016 10/15

Description:
This covariance is indicative of some parameter redundancy between D and ψsex implying that this cheetah dataset may be insufficient to distinguish between these two parameters. The solution to such a problem, if obtaining larger sample sizes is not a realistic option, is to provide informative pr
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.