Mon.Not.R.Astron.Soc.000,1–??(2011) Printed27January2011 (MNLATEXstylefilev2.2) α Cosmic density field reconstruction from Ly forest data S. Gallerani1, F. S. Kitaura2,3, A. Ferrara2 1INAF-OsservatorioAstronomicodiRoma,viadiFrascati33,00040MontePorzioCatone,Italy 2ScuolaNormaleSuperiore,PiazzadeiCavalieri7,56126,Pisa,Italy 3Ludwig-MaximiliansUniversitatMunchen,Scheinerstr.1,D-81679,Munich,Germany 1 1 27January2011 0 2 n ABSTRACT a Wepresentanovel,fastmethodtorecoverthedensityfieldthroughthestatisticsofthetrans- J mitted flux in high redshift quasar absorption spectra. The proposed technique requires the 6 computationof the probabilitydistribution functionof the transmitted flux (PF) in the Lyα 2 forestregionand,asasoleassumption,theknowledgeoftheprobabilitydistributionfunction ofthematterdensityfield(P∆).Weshowthattheprobabilitydensityconservationoftheflux O] and matter density unveils a flux-density (F −∆) relation which can be used to invert the Lyα forest without any assumption on the physical properties of the intergalactic medium. C Wetestourinversionmethodatz =3throughthefollowingsteps:[i]simulationofasample . h ofsyntheticspectraforwhichP∆isknown;[ii]computationofPF;[iii]inversionoftheLyα p forest through the F −∆ relation. Our technique, when applied to only 10 observed spec- - tracharacterizedbya signal-tonoise ratioS/N ≥ 100providesanexquisite(relativeerror o ǫ∆ .12%in&50%ofthepixels)reconstructionofthedensityfieldin&90%ofthelineof r t sight.Wefinallydiscussstrengthsandlimitationsofthemethod. s a Keywords: cosmology:large-scalestructure-intergalacticmedium-absorptionlines [ 2 v 8 1 INTRODUCTION lenght of theIGM(Cenet al.1994; Petitjean,et al.1995; Zhang 2 2 etal.1995;Hernquistetal.1996;Miralda-Escude’etal.1996).As 6 The ultraviolet radiation emitted by a quasar can suffer resonant aconsequence ofthisresult,theLyαforesthasbeenproposedas . a powerful method to study the clustering properties of the dark 1 Lyαscatteringasitpropagatesthroughtheintergalacticneutralhy- matter density field and to measure its power spectrum (Croft et 1 drogen.Inthisprocess,photonsareremovedfromthelineofsight al.1998;Nusser&Haehnelt1999;Pichonetal.2001;Rollindeet 0 resultinginanattenuationofthesourceflux,theso-calledGunn- 1 Petersoneffect(Gunn&Peterson1965).Atz 3,theneutralhy- al.2001;Zhanetal.2003;Vieletal.2004;McDonaldetal.2005; v: drogennumberdensityissufficientlysmallto∼allowtoresolvethe Zaroubietal.2006;Saittaetal.2008;Birdetal.2010). In thispaper, we focus our attention on the reconstruction of the i wideseriesofabsorptionlines,whichgiverisetotheso-calledLyα X density field along the line of sight (LOS), which represents the forest in quasar absorption spectra. Initially, the absorption lines starting point for the dark matter power spectrum measurement. r observedinquasarspectrawerebelievedtobeproducedbyanin- a Wepresentanovel,fastmethodtorecoverthedensityfieldalong tergalacticpopulationofpressure-confinedclouds,photoionizedby theLOStowardsz 3quasarwhichcanbeconsideredalternative theintegratedquasarflux(Sargentetal.1980).Nowadayabsorbers ∼ and/or complementary to the existing techniques in the literature oftheLyαforestaregenerallyassociatedtolarge-scaleneutralhy- mentionedabovewhichwillbefurtherdiscussedinthiswork. drogendensityfluctuationsinthewarmphotoionizedIGM. Thisscenario, firstlytestedthrough analytical calculations (Bond et al. 1988; Bi et al. 1992), has received an increased consensus thankstothedetectionofaclusteringsignalbothalongindividual (Cristianietal.1995;Luetal.1996;Cristianietal.1997;Kimetal. 2001)andclosepairsofquasarlinesofsight,resultinginanesti- 2 MODELLINGTHEFOREST matedsizefortheabsorberswhichvariesbetweenfewhundredsof LetusdiscretizetheLOStowardsadistantquasarinanumberof kpc(Smetteetal.1992;D’Odoricoetal.1998;Rauchetal.2001; pixelsN .ThetransmittedfluxduetoLyαabsorptionintheIGM Becker et al. 2004) to few Mpc (Rollinde et al. 2003; Coppolani pix atagivenpixeliiscomputedfromtheusualrelation etal.2006;D’Odoricoetal.2006).Hydrodynamicalcosmological simulationslendfurthersupporttothispicture,havingestablished F(i)=e−τ(i), (1) theexistenceofatightconnectionbetweentheHIdensityfieldand thedarkmatterdistribution,atleastonscaleslargerthantheJeans whereτ(i)istheLyαabsorptionopticaldepth: (cid:13)c 2011RAS 2 S. Gallerani,F.S.Kitaura,A.Ferrara Figure1.Leftpanel:Probabilitydistributionfunctionofthetransmittedfluxobtainedfrom10syntheticquasarabsorptionspectraatz = 3.Rightpanel: Probabilitydistributionfunctionofthedensityfieldatz=3,aspredictedbythelognormalmodel.ThethicklineshowsP∆oftherecovereddensityfield.The probabilityoffindingapixelcharacterizedbyatransmittedfluxaboveagivenFmax(cyanshadedregionontheleft-handpanel)isequaltotheprobabilityof findinganoverdensitybelow∆b(cyanshadedregionontheright-handpanel).Analogously,theprobabilityoffindingapixelcharacterizedbyatransmitted fluxbelowagivenFmin(grayshadedregionontheleft-handpanel)isequaltotheprobabilityoffindinganoverdensityabove∆d(grayshadedregionon theright-handpanel).Inparticular,ateachpixelcharacterizedbyatransmittedfluxF∗itcanbeassociatedanoverdensity∆∗suchthateq.(8)issatisfied.In thiscase,theprobabilityoffindingapixelcharacterizedbyatransmittedfluxFmin<F∗<Fmax(redhatchedregionontheleft-handpanel)isequaltothe probabilityoffindinganoverdensity∆b<∆∗<∆d(redhatchedregionontheright-handpanel). ∆x Npix profile,sinceittakesintoaccountthethermalandthenaturalbroad- τ(i)=cIα1+z(i) nHI(j)Φα[vH(i)−vH(j)], (2) eningoftheabsorptionline,respectively.Forlowcolumndensity Xj=1 regions,astheonescorrespondingtoLyαforest,thermalbroaden- wherecisthelightspeed,Iα istheLyαcrosssection,∆xisthe ingdominates,andtheVoigtfunctionreducestoasimpleGaussian comovingpixelsize,z(i)istheredshiftofpixeli,ΦαistheVoigt 1 v (i) v (j) 2 ipsrothfielenefourtrtahlehLyydαrogtreannsfirtaicotnio,nv.HistheHubblevelocity1,andnHI Φα[vH(i)−vH(j)]= √πb(j)exp(−(cid:20) H b−(j)H (cid:21) ) ,(5) ThecomputationofnHIgenerallyassumesthatthelowdensitygas whosewidthissetbythetemperature-dependentDopplerparame- whichgivesrisetotheLyαforestisapproximatelyinlocalequi- terb(j)= 2k T(j)/m ,withk andm beingtheBoltzmann B p B p libriumbetweenphotoionizationandrecombination.Byneglecting constantandtheprotonmass,respectively. thepresenceofhelium,andassumingthattheIGMishighlyion- p Fromthesystemofequations(1)-(5)thecomplexrelationbetween izedattheredshiftofinterestbyauniformultravioletbackground, thetransmittedfluxF inquasarabsorptionspectraandtheunder- thephotoionizationequilibriumconditionprovidesuswiththefol- lying density field ∆ becomes evident. The determination of the lowingrelation: F ∆relationnotonlydependsontheparametersdescribingthe − nHI(j)= α[TΓ(j)]{n0[1+z(j)]3∆(j)}2 ∝∆(j)β, (3) hpihsytosircya,lbsutattaelsooftohneIthGeMco(Γnv;oTl0u;tiγo)n,io.ef.tohnetrheesuclotsinmgicnrHeIiowniizthatitohne profileoftheabsorptionlines,whichinturnislinkedtothether- with 1.5 < β < 2.0 (Hui & Gnedin 1997). In eq. (3), Γ is malstateof thegasthroughtheDoppler parameter b.Inthenext the photoionization rate of neutral hydrogen at a given redshift Section,wedescribehowtheF ∆relationcanbeefficientlyin- z(j), ∆(j) is the overdensity at the pixel j, n is the mean − 0 ferredfrom a statisticalanalysis of the transmittedflux inquasar baryon number density at z = 0, and α[T(j)] T(j)−0.7 is ∝ absorptionspectra. thetemperature-dependentradiativerecombinationrate.Forquasi- linear IGM, where non-linear effects like shock-heating can be neglected, the temperature can be related to the baryonic density throughapower-lawrelation(Hui&Gnedin1997): 3 FLUX-DENSITYRELATION T(j)=T ∆(j)γ−1, (4) Let us assume that the signal-to-noise ratiocharacterizing an ob- 0 servedquasarabsorptionspectrumissuchthatthemaximumflux where T is the IGM temperature at the mean density at a given (minimum optical depth) which can be distinguished from full 0 redshiftz(j)whichdependsonthereionizationhistoryoftheUni- transmission is given by F (τ ), and that the minimum de- max min verse,suchastheslopeγoftheequationofstate,andΓ. tectableflux(maximumopticaldepth)isgivenbyF (τ ).By min max BesidesthenHIcomputation,thethermalstateoftheIGMaffects combiningeq.(2)-(3)-(4),itresultsthatτ = τ(z,β,Γ,T0,γ,∆). theprofileoftheabsorptionlines.Infact,theVoigtprofilewhich Thismeansthat,atagivenredshiftz,foranyβ,andforanygiven entersineq.(2)istheconvolutionofaGaussianandaLorentzian IGM thermal and ionization history, two characteristic overden- sities do exist: [i] ∆ , where the subscript “b” means “bright”, b such that each Lyα absorber sitting on ∆ < ∆ would provide b 1 ThevelocityofaLyαforestabsorberisgenerallygivenbythesumof τ(∆b) . τmin, i.e. full transmission of the quasar continuum theHubble andthe peculiar velocities, i.e. v(i) = vH(i)+vpec(i). In (F >Fmax);[ii]∆d,wherethesubscript“d”means“dark”,such thiswork,weneglect peculiar velocities andwediscussthis issueinthe that each overdensity ∆ > ∆d would provide τ(∆d) & τmax, Discussionsection. thereforecompletelydepletingthefluxemittedbythesourceatthe (cid:13)c 2011RAS,MNRAS000,1–?? Cosmicdensityfield reconstructionfromLyα forestdata 3 Figure2.Flux-densityrelationresultingfromflux/densityprobabilityconservationisshownfordifferentparametersdefiningtheIGMphysicalproperties,as labelledinthefigures.Theblacksquaresrepresentresultsobtainedfrom10syntheticspectra,whilecolouredlinesdenotetheflux-densityrelationsresulting bysolvingeq.(8).Intherightmostpanel,theflux-densityrelationisplottedforallthesetofparametersconsidered,whichprovidethesamemeanflux. locationoftheabsorber(F <F ). of the baryonic density field and its correlation with the peculiar min Oneofthestatisticsadoptedtoanalyzequasarspectraistheprob- velocityfieldaretakenintoaccountadoptingtheformalismintro- ability distribution function of the transmitted flux (P ), which duced by Bi & Davidsen (1997). To enter the mildly non-linear F quantify thenumber of pixels characterized by atransmittedflux regimewhichcharacterizestheLyαforestabsorbersweusealog- between F and F +dF.Let us assume that at agiven overden- normalmodelintroducedbyColes&Jones(1991). sity∆∗ itisassociatedauniquevalueofthetransmittedfluxF∗. The thermal and ionization state of the IGM are fixed in such Inthiscase,∆ and∆ canbedefinedthroughtheprobabilityof a way that the mean transmitted flux simulated in a sample of b d findingapixelcharacterizedbyatransmittedfluxF >F ,and lines of sight is F¯ 0.72, as obtained from real data (Songaila max ∼ F <F ,respectively.OnceP iscomputedfromobservedspec- 2004).Weadoptthefollowingsetofparameters:[i](Γ,T ,γ) = min F 0 tra,∆ and∆ canbedeterminedfromthefollowingequations: (3.0,1.5,1.2); [ii] (3.2,1.5,0.6); [iii] (4.1,1.0,1.2), where Γ is b d reportedinunitsof10−12s−1,andT inunitsof104K. 1 ∆b 0 PF dF = P∆d∆, (6) We add observational artifacts to the synthetic spectra: first, we ZFmax Z0 smooth each simulated spectrum to a resolution R=36000, com- Fmin +∞ parabletotheoneofhigh-resolutionspectrographs (e.g.HIRES); PF dF = P∆d∆, (7) then we add noise to get a signal-to-noise ratio S/N=100; finally Z0 Z∆d we rebin the noisy synthetic spectra to R=10000, in order to re- where P∆ is the probability distribution function of the density move small flux fluctuations. Starting from a sample of 10 LOS, field. Analogously to eq. (6) and eq. (7), to each pixel character- wecomputetheresultingP forthecases[i],[ii],[iii].InFig.1, F ized by a transmitted flux Fmin < F∗ < Fmax an overdensity PFforthecase[i]isshownintheleftpanel,throughasolidline. ∆b <∆∗ <∆dcanbeassociatedsuchthat: WeassumethelognormalP∆whichhasbeenadoptedforthesyn- Fmax ∆∗ thetic spectra simulations, and which is described by a Gaussian PF dF = P∆d∆, (8) withmean= 0.28,andsigma= 0.48(Fig.1,rightpanel,solid ZF∗ Z∆b line).Thechoi−ceofalognormalP isonlymadefortestingpur- ∆ or,equivalently, poses, but when dealing with real data any other, perhaps more realistic, prescription for P can be implemented. For example, F∗ ∆d ∆ PF dF = P∆d∆. (9) Miralda-Escude’etal.2000suggestedadifferentfunctionalform, ZFmin Z∆∗ whoseagreement withdatahasnot yetfullyestablished(seedis- Notethat eq. (6)-(7)-(8)-(9) are simplyobtained by imposing the cussioninBeckeretal.2006). conservationoftheflux/densityprobabilitydensities.Theinference Starting from the computed P and the assumed P , we solve F ∆ of∆b,∆d,∆∗ onlydependsontheassumedP∆ andnotonany eq.(8),toestablishtheflux-densityrelationforeachofthesetof assumptionconcerningthermalandionizationhistorieswhichare parametersconsidered.TheresultingF ∆relations2 areshown − howeverencodedintotheobservedP ,asweshowinthenextSec- through coloured lines in Fig. 2 for the case [i] (left-most panel, F tion.Bysolvingeq.(8),foreachobservedvalueofF∗ intermsof redline),[ii](middlepanel,greenline),[iii](right-mostpanel,blue ∆∗,theflux-densityrelationoftheLyαforestcanbereadilyde- line).Inthisfigure,thefilledsquaresandthesolidblacklinesrep- rived. SuchF ∆relationcanbe usedtoinvert theLyαforest, resentthemeanfluxandtherelative1σ error,respectively,corre- − thereforeallowingtoreconstructthedensityfieldalongtheLOS. spondingtoagivenoverdensity,asobtainedfromoursimulations. ItcanbeseenthattheresultingF ∆relationsobtainedbysolv- − ingeq.(8),agreeverywellwiththerelationbetweenthemeanflux and the overdensities predicted by the simulations. However, our 4 INVERSIONPROCEDURE methoddoesnotmanagetotakeintoaccountthedispersionofthe F ∆relations. Wesimulatequasarabsorptionspectraatz =3throughthemodel − describedintheprevioussection.Inparticular,forwhatconcerns thebaryonicdensitydistributionalongtheLOSenteringineq.(3), 2 InthisworkweadoptthecosmologicalparametersprovidedbyKomatsu weadopt themethod described byGallerani et al. (2006), whose etal.(2010).Uncertaintiesonthecosmologicalparametershavenegligible mainfeaturesaresummarized asfollows.Thespatialdistribution effectontheflux-densityrelation. (cid:13)c 2011RAS,MNRAS000,1–?? 4 S. Gallerani,F.S.Kitaura,A.Ferrara Thereasonforthisisduetoourassumptionofaone-to-onecorre- spondence between thetransmittedfluxobserved atagivenpixel iandtheunderlyingmatterdensityfieldatthecorrespondingred- shiftz(i).Suchanassumptionwouldbevalidiftheprofileofthe absorptionlineswouldbedescribedbyaDiracDeltafunction(i.e. in the ideal case of an infinitely small natural broadening of the line), and in the case of a cold IGM (i.e. in the ideal case of no thermalbroadeningoftheline).Inthisidealcasethecrosssection oftheLyαtransitionisdifferentfromzeroonlyincorrespondence ofthepixeliforwhichwecomputetheopticaldepth.Inthereal case,totheoptical depthof thepixel idocontributealsothead- jacentpixels.Inparticular,thehigheristheIGMtemperature(i.e. thelargeristhedopplerparameter),thelargeristhenumberofad- jacentpixelsresponsiblefortheopticaldepthofthepixeli.There- fore,anobservedvalueofthetransmittedfluxF∗atthepixelican be produced by an isolated overdensity ∆ > ∆∗, as well as by aclusteringofoverdensities∆ < ∆∗.Ourmethoddoesnottake intoaccountthebroadeningoftheabsorptionlines,thereforeitcan Figure 3. Top panel: Example of synthetic quasar absorption spectra notprovidethedispersionintheF ∆relations;inthediscussion at z = 3 as obtained by adopt the following set of parameters: [i] − section, wewillanalyze theeffect of thislimitof our method on (Γ,T0,γ)=(3.0,1.5,1.2)(redline);[ii](3.2,1.5,0.6)(greenline);[iii] thedensityfieldreconstruction. (4.1,1.0,1.2)(blueline),whereΓisreportedinunitsof10−12s−1,and In Fig. 3, we show an example of the simulated density fieldfor T0inunitsof104 K.Bottompanel:Thedottedblacklinerepresentsthe a random LOS (bottom panel, black line) and the corresponding distributionoftheoverdensitieswhichproducethetransmittedfluxshown transmittedfluxes(toppanel)obtainedforforthecase[i](redline), inthetoppanel.Theredline(green/blue)showtherecovereddensityfield, asobtainedbyinvertingthefluxdensityrelationcorrespondingtotheset [ii](greenline),[iii](blueline).InthebottompanelofFig.3the ofparameters[i][ii/iii].Themagentalineshowthecaseofahighquality originallyadopted density field(blackline) iscompared withthe (S/N=1000)spectrum. recovered ones, as obtained by applying the F ∆ relation to − the transmittedflux computed fromthe set of parameters [i] (red line),[ii](greenline),and[iii](blueline).Thisfigureshowsthat Asforlimit(2),thisisduetothefactthatweareconsideringbotha themethodworksquitewell3forallthesetofparametersconsid- maximumflux(F )whichcanbedistinguishedfromfulltrans- ered,i.e.almostindependentlyfromthephysicalpropertiesofthe max mission, and a minimum detectable flux (F ). As explained in IGM.ThiscomesoutbythefactthattheF ∆relationsobtained min − Sec.3,thesemaximumandminimumtransmittedfluxestranslate by solving eq. (8) in terms of ∆∗ (coloured lines in Fig. 2) are intoaminimum(∆ )andmaximum(∆ )overdensitieswhichcan notcompletelyindependentonthereionizationhistory,i.e.differ- b d berecovered.Stateddifferently,incorrespondenceofthemostun- entsetofparametersaffectsdifferentlytheP ,thereforeproviding F derdense regions (∆ < ∆ ) we can only put an upper limit on slightly different F ∆ relations. Thisisthe reason whyby in- b verting the Lyαfore−st we can associate the same density fieldto the recovered density field, i.e. (∆ = ∆b); analogously, for the mostoverdenseregions(∆ > ∆ )onlyalowerlimitocanbeset, differentvaluesofthetransmittedflux,obtainingareconstruction d i.e.(∆ = ∆ ). For afixed mean transmittedflux, themaximum methodwhichisfreeofanyassumptiononthethermalandioniza- d and minimum recoverable overdensities depend on IGM proper- tionstateoftheIGM.Inthenextsectionwediscussthestrengths ties, and are more sensitive4 to changes in γ than to T : [i/ii] andthelimitsofourmethodinfurtherdetails. 0 (∆ ;∆ ) = (0.09;4.90); [iii] (∆ ;∆ ) = (0.11;3.90). Typi- b d b d caluncertaintiesonF atz = 3(< 10%,Songaila2004)im- mean pliessmallvariationson∆ and∆ .Forexample,inthecase[i] b d 5 DISCUSSION a mean transmitted flux 10% higher [lower] than 0.72 results in (∆ ;∆ )=(0.11;6.10)[(∆ ;∆ )=(0.08;3.82)]. From the bottom panel of Fig. 3, it is evident that the method is b d b d Theexistenceof∆ and∆ allowsustorecoverthedensityfield overallverysuccessful.Neverthelesssomeminordiscrepanciebe- b d along&92%ofthesimulatedlinesofsight.Thisresultcanbefur- tweentheoriginalandreconstructeddensityfieldremain.Inpartic- therimprovedbyapplyingourmethodtoveryhighqualityspectra. ular,thereconstructeddensityfieldis(1)smootherthantheorigi- UptonowwehaveassumedaS/N = 100,whichmeansthatwe nalone,and(2)itoverestimates(underestimates)theoriginalone aresensitiveat1σleveltofluxvariationsuptotheseconddecimal inthemostunderdense(overdense)regions. digit. Therefore, we have considered F = 0.99 and F = Theaccuracyloss(1)arisesfromtheadoptedassumptionofaone- max min 0.01.However,ifweconsiderhigherqualitydata(e.g.S/N=1000), to-onecorrespondencebetweenthetransmittedfluxandthematter theoriginaldensityfieldisbetterrecovered,sincethecompleteness density.Asalreadydiscussedintheprevioussection,thisassump- ofthesignal risesto& 98%,being(∆ ;∆ ) = (0.03;6.60). In tion does not allow us to take into account the clustering of the b d thiscase,weobtainareconstructedsignalcharacterizedbyarela- densityfieldlocally,orequivalentlythethermalbroadeningofthe absorptionlines.Thisresultsinareconstructeddensityfieldwhich issmootherthantheoriginalone. 4 Foraninvertedequationofstate[iii],∆bishigherand∆dislowerthan inthecaseofa“regular”one.Infact,ascanbeseenfromFig.3,inthecase 3 Bycomputingtherelativeerrorǫ∆oftherecovereddensityfieldalong [iii](greenline),themostunderdenseregions(∆<∆b)tendtobemore ≥10linesofsight,wefindthat&50%ofthepixelsarecharacterizedby transmitting(F > Fmax)andthemostopaqueregions(∆ > ∆d)tobe ǫ∆.0.12. evenmoreabsorbed(F <Fmin) (cid:13)c 2011RAS,MNRAS000,1–?? Cosmicdensityfield reconstructionfromLyα forestdata 5 tiveerrorǫ . 12%in51%ofthepixels,12% < ǫ < 42%in thepropertiesoftheIGM(Γ;T ;γ)insuchawaythattheresulting ∆ ∆ 0 39%ofthepixels,and42%<ǫ <100%in10%ofthepixels. meantransmittedfluxmatchesobservations. Then,wehavecom- ∆ We finally compare our method with previously developed tech- putedP foreachparametersetconsidered.DifferentIGMprop- F niques.Oneoftheapproachesgenerallyadoptedinthedensityfield ertiesaffectdifferentlytheP ,henceresultinginslightlydifferent F reconstruction istodefineaphysical model relatingtheobserved F ∆relations.Thisprovidesareconstructionmethodwhichdoes − fluxtotheunderlyingdensityfieldandtheninvertthisrelation.As notrequireanyassumptiononthethermalandionizationstateof showninSec.2,anymodel whichallowstopredictthetransmit- theIGM.Theproposedmethodisparticularlysuitablefortheex- tedfluxresultingfromagivendensityfielddistribution,atagiven tractionoflargescalematterdensityfieldssignalsfromLyαdata, redshift z,depends on several uncertain parameters (β,Γ, T γ). which represents the starting point for the detection of baryonic 0 Thisapproach hasbeen pioneered byNusser &Haehnelt (1999), acousticoscillationsthroughquasar absortionspectra(McDonald hereafterNH99.Theseauthorshavedeveloped atechniquebased &Eisenstein2007;Slosaretal.2009;Kitauraetal.2010).Infact, onamodeloftheLyαforest,whichallowstoreconstructtheden- thiskindofstudiesarebasedonthedensityfieldreconstructionon sityfieldalongquasarsightlinesthroughaniterativemethod.Such scalessmallerthan0.1Mpcalongalargenumberoflinesofsight techniqueallowstocorrectlytakeintoaccountthethermalbroad- morethan10Mpclong.Suchrequirementsarebeyondthecapabil- eningoftheabsorptionlines,assumingthatbothT andγ,which ityofcurrentsimulations,whilecanbesatisfiedthroughourfast, 0 affecttheDopplerparameter,areknown. thoughapproximate,technique. TheNH99inversionmethodhasbeenadoptedbyseveralauthors tostudythepropertiesoftheIGMandtomeasurethematterpower spectrum from the Lyα forest (e.g. Pichon et al. 2001; Rollinde ACKNOWLEDGMENTS etal.2001;Zaroubietal.2006).However,ithasbeenrecognized that uncertainties onβ, γ,and T resultin spurious biasesinthe SGacknowledgesaELTEBudapestPostdoctoralFellowship,and 0 recovereddensityfield(NH99;Pichonetal.2001; Rollindeetal. aSNSPisaVisitingScientistFellowshipwhichhavepartiallysup- 2001). The strong dependence of the matter power spectrum on ported this work. The authors thank the Intra-European Marie- the IGM properties, as inferred from Lyα forest data, has been Curiefellowshipwithprojectnumber221783andacronymMCM- alsoconfirmedbyBirdetal.(2010).Saittaetal.(2008)havepro- CLYMANforsupportingthisproject. posed another possible approach to reconstruct the density field through the transmitted flux in quasar absorption spectra, named FLO(i.e.FromLinestoOverdensities). Alsointhiscase thepa- REFERENCES rametersdefining the IGMequation of stateneed to beassumed. BeckerG.D.,SargentW.L.W.,RauchM.,2004,ApJ,613,61 Moreover,whiletheFLOmethodseemspromisingfortherecon- BeckerG.D.,RauchM.&SargentW.L.W.,2007,ApJ,662,72 structionofthemostoverdenseregions(upto∆ 30),underden- ∼ BiH.G.,Bo¨rnerG.,ChuY.,1992,A&A,266,1 sities(∆<1)tendtobeunderestimated. BirdS.,PeirisH.V.,VielM.,VerdeL.,2010,arXiv:1010.1519 Summarizing,themethodsavailablesofarintheliteraturetriedto BondJ.R.,SzalayA.S.,SilkJ.,1988,ApJ,324,627 inverttheF ∆relationforwhichalargenumberofassumptions CenR.,Miralda-Escude’J.,OstrikerJ.P.,RauchM.,1994,ApJ,437,L9 − havetobemadeonthephysicalstateoftheIGM.Wehaveshown ChoudhuryT.R.&FerraraA.,2006,MNRAS,371,L55 thattheF ∆relationcanbeefficientlyinferredfromastatistical CoppolaniF.etal.,2006,MNRAS,370,1804 analysisof−thetransmittedfluxinquasar absorptionspectradras- CroftR.A.C.,etal.,1998,ApJ,495,44P.,1998,A&A,339,678 D’OdoricoV.,etal.,1998,A&A,339,678 ticallyreducingthenumberofassumptions.Asfarasthisworkis D’OdoricoV.etal.,2006,MNRAS,372,1333 concerned,wehavenotconsideredpeculiarvelocityeffectswhich FanX.etal.,2006,AJ,132,117 influence the quality of the recovery (NH99). However, we note GalleraniS.,ChoudhuryT.R.&Ferrara,A.,2006,MNRAS,370,1401 thatthesamemethoddescribedinNH99forthereconstructionin GunnJ.E.&PetersonB.A.,1965,ApJ,142,1633 realspacecanbeappliedtoourrecovereddensityfielditeratively. HernquistL.,etal.,1996,ApJ,457,L51 Weleavethistoafuturework.Wefinallynotethatsofarwehave HuiL.&GnedinN.Y.,1997,MNRAS,292,27 beenreferringtoquasar absorptionspectra. However,themethod KitauraF.S.,GalleraniS.,FerraraA.,2010,arXiv:1011.6233 proposedcanbeappliedtoGRBabsorptionspectraaswell. KomatsuE.etal.,2010,arXiv:1001.4538,acceptedforpublicationinApJS McDonaldP.,EisensteinD.J.,2007,Phys.Rev.D.,76,6 McDonaldP.etal.,2005,atro-ph/0407377 Miralda-Escude’J.,CenR.,OstrikerJ.P.,RauchM.,1996,ApJ,471,582 6 CONCLUSIONS NusserA.,HaehneltM.,1999,MNRAS,303,197 PageM.J.etal.2007,ApJS,170,335 Anovel,fastmethodtorecoverthedensityfieldthroughthestatis- PetitjeanP.,Mu¨cketJ.P.,KatesR.E.,1995,A&A,295,L9 ticsofthetransmittedfluxinhighredshiftquasarabsorptionspec- PichonC.,etal.,2001,MNRAS,326,597 trahasbeenintroduced.Theproposedtechniquerequiresthecom- RauchM.,etal.,2001,ApJ,562,76 putation of the probability distribution function of the transmit- RollindeE.,PetitjeanP.,PichonC.,2001,A&A,376,28 ted flux(P ) inthe Lyαforest region and, asa soleassumption, RollindeE.,etal.,2003,MNRAS,341,1279 F theknowledgeoftheprobabilitydistributionfunctionofthemat- SaittaF.,etal.,2008,MNRAS,385,519 SargentW.L.W.,etal.,1980,AJSS,42,41 terdensityfield(P ).Wehaveshownthattheprobabilitydensity ∆ SlosarA.,HoS.,WhiteM.,LouisT.,2009,JCAP,10,19 conservation of the fluxand matter density unveils aflux-density SmetteA.,etal.,1992,ApJ,389,39 (F ∆)relationwhichcanbeusedtoinverttheLyαforest,with- − SongailaA.,2004,AJ,127,2598 outanyassumptiononthepropertiesoftheIGM. VielM.,HaehneltM.G.,SpringelV.,2004,MNRAS,354,684 Ourinversionmethodhasbeenthentestedatz=3throughasemi- ZaroubiS.,etal.,2006,MNRAS,369,734 analyticalmodeloftheLyαforestwhichadoptsalognormalP∆. ZhanH.,2003,344,935 Firstofallwehavesimulatedasampleofsyntheticspectravarying ZhangY.,AnninosP.,NormanM.L.,1995,ApJ,453,L57 (cid:13)c 2011RAS,MNRAS000,1–??