ebook img

Copyright by Aaron Joshua Fenyes 2016 PDF

245 Pages·2016·3.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Copyright by Aaron Joshua Fenyes 2016

Copyright by Aaron Joshua Fenyes 2016 The Dissertation Committee for Aaron Joshua Fenyes certi(cid:28)es that this is the approved version of the following dissertation: Warping geometric structures and abelianizing SL R local systems 2 Committee: Andrew Neitzke, Supervisor David Ben-Zvi Jacques Distler Daniel Freed Sean Keel Warping geometric structures and abelianizing SL R local systems 2 by Aaron Joshua Fenyes, B.S.; M.S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Ful(cid:28)llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2016 To: [email protected] (To all the friends I made along the way) Acknowledgments This dissertation would not have been started or (cid:28)nished without the tireless guidance of Andy Neitzke. I’m very grateful to Jen Berg for pointing out the argument used to prove Proposition 8.2.A, and to Sona Akopian for pointing out a key step in the proof of Theorem 9.3.K (I am, of course, re- sponsible for any mistakes in these arguments). I’ve also enjoyed the bene(cid:28)t of conversations, some short and some long, with Jorge Acosta, David Ben-Zvi, Francis Bonahon, Luis Duque, Richard Hughes, Tim Magee, Tom Mainiero, Taylor McAdam, Amir Mohammadi, Javier Morales, and Max Riestenberg, as well as diction brainstorming with Eliana Fenyes. This research was supported in part by NSF grants 1148490 and 1160461. v Warping geometric structures and abelianizing SL R local systems 2 Publication No. Aaron Joshua Fenyes, Ph.D. The University of Texas at Austin, 2016 Supervisor: Andrew Neitzke The abelianization process of Gaiotto, Hollands, Moore, and Neitzke parameterizes SL C local systems on a punctured surface by turning them K intoC× localsystems, whichhaveamuchsimplermodulispace. Whenapplied to an SL R local system describing a hyperbolic structure, abelianization pro- 2 duces an R× local system whose holonomies encode the shear parameters of the hyperbolic structure. This dissertation extends abelianization to SL R local systems on a 2 compact surface, using tools from dynamics to overcome the technical chal- lenges that arise in the compact setting. Thurston’s shear parameterization of hyperbolic structures, which has its own technical subtleties on a compact surface, once again emerges as a special case. vi Table of Contents Acknowledgments v Abstract vi Part I An invitation to abelianization 1 Chapter 1. Introduction 2 1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2. Geometric structures as local systems 4 2.1 A general framework . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Global to local, symmetries to sheaves . . . . . . . . . . 4 2.1.2 Geometric structures on manifolds . . . . . . . . . . . . 5 2.1.3 Analytic geometric structures . . . . . . . . . . . . . . . 8 2.1.4 Geometry unmoored . . . . . . . . . . . . . . . . . . . . 9 2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Complex projective structures . . . . . . . . . . . . . . . 11 2.2.2 Hyperbolic structures . . . . . . . . . . . . . . . . . . . 11 2.2.3 Translation structures . . . . . . . . . . . . . . . . . . . 12 2.2.4 Half-translation structures . . . . . . . . . . . . . . . . . 13 Chapter 3. Geometric structures as (cid:29)at bundles 15 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 A carrier for complex projective structures . . . . . . . . . . . 16 3.3 Carriers for hyperbolic structures . . . . . . . . . . . . . . . . 18 3.3.1 A canonical construction . . . . . . . . . . . . . . . . . 18 vii 3.3.2 Construction from a reference hyperbolic structure . . . 20 3.4 A general framework . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4. Comparing geometric structures 24 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 The Schwarzian derivative . . . . . . . . . . . . . . . . . . . . 24 4.2.1 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 The de(cid:28)nition . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.3 Showing the de(cid:28)nition makes sense . . . . . . . . . . . . 28 4.2.4 Some geometric meaning . . . . . . . . . . . . . . . . . 29 4.3 Deviations of geometric structures . . . . . . . . . . . . . . . . 33 4.4 Deviations of locally constant sheaves . . . . . . . . . . . . . . 35 Chapter 5. Warping geometric structures 37 5.1 The general idea . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Cataclysms on punctured hyperbolic surfaces . . . . . . . . . . 38 5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.2 Cataclysms on surfaces with cusps . . . . . . . . . . . . 38 5.2.3 The deviation of a cataclysm . . . . . . . . . . . . . . . 41 5.2.4 Cataclysms on surfaces with holes . . . . . . . . . . . . 43 5.3 Cataclysms on compact hyperbolic surfaces . . . . . . . . . . . 43 5.3.1 Generalizing weighted ideal triangulation . . . . . . . . 43 5.3.2 Performing cataclysms . . . . . . . . . . . . . . . . . . . 46 Chapter 6. Abelianizing geometric structures 48 6.1 Shear parameters for cusped hyperbolic surfaces . . . . . . . . 48 6.2 Shear parameters for compact hyperbolic surfaces . . . . . . . 50 6.3 Abelianization on punctured surfaces . . . . . . . . . . . . . . 51 6.3.1 A geometric realization of the shear parameters . . . . . 51 6.3.2 Shear parameters as periods . . . . . . . . . . . . . . . . 52 6.3.3 Shear parameters as holonomies . . . . . . . . . . . . . 56 6.3.4 Ideal triangulations and half-translation structures . . . 60 6.4 Abelianization on compact surfaces . . . . . . . . . . . . . . . 61 viii Part II Abelianization on compact surfaces 63 Chapter 7. Introduction 64 7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2 Why not SL C? . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2 7.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.4.1 Running notation . . . . . . . . . . . . . . . . . . . . . 70 7.4.2 Index of symbols . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 8. Warping local systems 72 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.2 Conventions for local systems . . . . . . . . . . . . . . . . . . 72 8.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.2.2 Linear local systems . . . . . . . . . . . . . . . . . . . . 74 8.3 The descriptive power of deviations . . . . . . . . . . . . . . . 76 8.4 Warping locally constant sheaves . . . . . . . . . . . . . . . . . 78 8.5 Warping local systems . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 9. Dividing translation surfaces 83 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.2 A review of translation and half-translation surfaces . . . . . . 84 9.2.1 Translation surfaces . . . . . . . . . . . . . . . . . . . . 84 9.2.2 First return maps . . . . . . . . . . . . . . . . . . . . . 87 9.2.3 Half-translation surfaces . . . . . . . . . . . . . . . . . . 90 9.3 Dividing intervals . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.3.1 Construction of divided and fractured intervals . . . . . 93 9.3.2 Examples from dynamics . . . . . . . . . . . . . . . . . 94 9.3.3 Properties of divided intervals . . . . . . . . . . . . . . . 97 9.3.4 Properties of fractured intervals . . . . . . . . . . . . . . 101 9.3.5 Metrization . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.4 Dividing translation surfaces . . . . . . . . . . . . . . . . . . . 108 9.4.1 Construction of divided and fractured surfaces . . . . . 108 ix 9.4.2 Properties of divided and fractured surfaces . . . . . . . 111 9.5 Dynamics on divided surfaces . . . . . . . . . . . . . . . . . . 114 9.5.1 The vertical (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . 114 9.5.2 First return maps . . . . . . . . . . . . . . . . . . . . . 116 9.5.3 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.5.4 Ergodic theory . . . . . . . . . . . . . . . . . . . . . . . 122 9.5.5 The fat gap condition . . . . . . . . . . . . . . . . . . . 128 Chapter 10. Warping local systems on divided surfaces 135 10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 10.2 Critical leaves in a (cid:29)ow box . . . . . . . . . . . . . . . . . . . 136 10.3 Deviations de(cid:28)ned by jumps, conceptually . . . . . . . . . . . 136 10.4 Deviations de(cid:28)ned by jumps, concretely . . . . . . . . . . . . . 137 10.4.1 The restriction property . . . . . . . . . . . . . . . . . . 138 10.4.2 The composition property . . . . . . . . . . . . . . . . . 138 Chapter 11. Uniform hyperbolicity for SL R dynamics 140 2 11.1 Motivation and notation . . . . . . . . . . . . . . . . . . . . . 140 11.2 The global version . . . . . . . . . . . . . . . . . . . . . . . . . 141 11.3 The local version . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.4 The two versions are usually equivalent . . . . . . . . . . . . . 147 11.5 Extending over medians . . . . . . . . . . . . . . . . . . . . . . 151 11.6 Constructing uniformly hyperbolic local systems . . . . . . . . 153 Chapter 12. Abelianization in principle 156 12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.1.2 Framings . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.1.3 Abelianization . . . . . . . . . . . . . . . . . . . . . . . 160 12.1.4 Abelianization without punctures . . . . . . . . . . . . . 161 12.2 Running assumptions . . . . . . . . . . . . . . . . . . . . . . . 163 12.3 The slithering jump . . . . . . . . . . . . . . . . . . . . . . . . 164 12.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 164 x

Description:
Aaron Joshua Fenyes, B.S.; M.S. Presented to the Faculty of the Graduate School of . 6.3.1 A geometric realization of the shear parameters .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.