ebook img

Copula-Based Markov Models for Time Series: Parametric Inference and Process Control PDF

141 Pages·2020·3.957 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Copula-Based Markov Models for Time Series: Parametric Inference and Process Control

SPRINGER BRIEFS IN STATISTICS JSS RESEARCH SERIES IN STATISTICS Li-Hsien Sun · Xin-Wei Huang ·  Mohammed S. Alqawba ·  Jong-Min Kim · Takeshi Emura Copula-Based Markov Models for Time Series Parametric Inference and Process Control SpringerBriefs in Statistics JSS Research Series in Statistics Editors-in-Chief Naoto Kunitomo,Economics,MeijiUniversity, Chiyoda-ku,Tokyo,Tokyo,Japan Akimichi Takemura, The Center for Data Science Education and Research, Shiga University, Bunkyo-ku, Tokyo, Japan Series Editors Genshiro Kitagawa, Meiji Institute for Advanced Study of Mathematical Sciences, Nakano-ku, Tokyo, Japan Shigeyuki Matsui, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan Manabu Iwasaki, School of Data Science, Yokohama City University, Yokohama, Tokyo, Japan Yasuhiro Omori, Graduate School of Economics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Masafumi Akahira, Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, Japan Masanobu Taniguchi, Department of Mathematical Sciences/School, Waseda University/Science & Engineering, Shinjuku-ku, Japan Hiroe Tsubaki, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan Satoshi Hattori, Faculty of Medicine, Osaka University, Suita, Osaka, Japan Kosuke Oya, School of Economics, Osaka University, Toyonaka, Osaka, Japan ThecurrentresearchofstatisticsinJapanhasexpandedinseveraldirectionsinline with recent trends in academic activities in the area of statistics and statistical sciences over the globe. The core of these research activities in statistics in Japan has been the Japan Statistical Society (JSS). This society, the oldest and largest academicorganization for statistics inJapan, was founded in1931by ahandful of pioneerstatisticiansandeconomistsandnowhasahistoryofabout80years.Many distinguished scholars have been members, including the influential statistician Hirotugu Akaike, who was a past president of JSS, and the notable mathematician Kiyosi Itô, who was an earlier member of the Institute of Statistical Mathematics (ISM), which has been a closely related organization since the establishment of ISM. The society has two academic journals: the Journal of the Japan Statistical Society (English Series) and the Journal of the Japan Statistical Society (Japanese Series). The membership of JSS consists of researchers, teachers, and professional statisticians in many different fields including mathematics, statistics, engineering, medical sciences, government statistics, economics, business, psychology, educa- tion, and many other natural, biological, and social sciences. The JSS Series of Statisticsaimstopublishrecent results ofcurrentresearchactivities intheareas of statistics and statistical sciences in Japan that otherwise would not be available in English; they are complementary to the two JSS academic journals, both English andJapanese.Becausethescopeofaresearchpaperinacademicjournalsinevitably hasbecomenarrowlyfocusedandcondensedinrecentyears,thisseriesisintended to fill the gap between academic research activities and the form of a single academic paper. The series will be of great interest to a wide audience of researchers, teachers, professional statisticians, and graduate students in many countrieswhoareinterestedinstatisticsandstatisticalsciences,instatisticaltheory, and in various areas of statistical applications. More information about this subseries at http://www.springer.com/series/13497 Li-Hsien Sun Xin-Wei Huang (cid:129) (cid:129) Mohammed S. Alqawba (cid:129) Jong-Min Kim Takeshi Emura (cid:129) Copula-Based Markov Models for Time Series Parametric Inference and Process Control 123 Li-Hsien Sun Xin-Wei Huang Graduate Institute of Statistics Institute of Statistics National Central University National Chiao TungUniversity Taoyuan,Taiwan Hsinchu, Taiwan Mohammed S. Alqawba Jong-Min Kim Department ofMathematics Division of ScienceandMathematics Collegeof Sciences andArts at AlRass University of Minnesota at Morris Qassim University Morris, MN, USA Unayzah, SaudiArabia Takeshi Emura Department ofInformation Management Chang GungUniversity Taoyuan,Taiwan ISSN 2191-544X ISSN 2191-5458 (electronic) SpringerBriefs inStatistics ISSN 2364-0057 ISSN 2364-0065 (electronic) JSSResearch Series in Statistics ISBN978-981-15-4997-7 ISBN978-981-15-4998-4 (eBook) https://doi.org/10.1007/978-981-15-4998-4 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Thisbookprovidesstatisticalmethodologiesforfittingcopula-basedMarkovchain models to a serially correlated time series. These methods are illustrated through a varietyofillustrativeexamplesfromfinance,industry,sports,andotherfields.Itis our hope that the book serves as an accessible textbook for learning statistical analyses of time series data using copulas for researchers/students in the fields of economics, management, mathematics, statistics, and others. The book can also serve as a research monograph, where each chapter can be read independently. As the subtitle “Parametric inference” suggests, we focus on parametric models based on the normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. The book adopts likelihood-based methods as the main statistical tools for fitting the models and develops computing techniques to find the maximum likelihood estimator. Some chapters discuss statistical process control, Bayesian methods, and regression methods. We provide computer codes for most presented statistical methods to help readers analyze their data. Taoyuan, Taiwan Li-Hsien Sun Hsinchu, Taiwan Xin-Wei Huang Qassim, Saudi Arabia Mohammed S. Alqawba Minnesota, USA Jong-Min Kim Taoyuan, Taiwan Takeshi Emura v Acknowledgements Wethanktheserieseditor,Dr.ShigeyukiMatsui,forhisvaluablecommentsonthis book. Li-Hsien Sun thanks his former graduate students, Chang-Shang Lee and Wei-Cheng Lin, for their prior contribution to our published articles. He is finan- cially supported by Ministry of Science and Technology, Taiwan (MOST 108-2118-M-008 -002 -MY2). Xin-Wei Huang would like to thank the advisor of his master’s degree, Dr.TakeshiEmura,whoisalsotheauthorofthisbook.Hewouldalsoliketothank Dr. Jia-Han Shih for his kind help. Mohammed Alqawba thanks his advisor Dr. Norou Diawara for his guidance and valuable comments that lead to several published articles. Takeshi Emura thanks his former graduate student, Ting-Hsuan Long, for his priorcontributiontoourpublishedarticles.HeisfinanciallysupportedbyMinistry of Science and Technology, Taiwan (MOST 107-2118-M-008-003-MY3). vii Contents 1 Overview of the Book with Data Examples. . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Copulas and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Chemical Process Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 S&P 500 Stock Market Index Data . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Batting Average Data in MLB . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 Stock Price Data of Dow Jones Industrial Average. . . . . . . . . . . . 4 1.7 Data on the Count of Arsons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Copula and Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Kendall’s Tau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Archimedean Copulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Random Number Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Copula-Based Markov Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Appendix A: The Proof of Cðu;vÞ¼uþv(cid:2)1þCð1(cid:2)u;1(cid:2)vÞ being a Copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Appendix B: Proofs of Copulas Approaching to the Independence . . . . 24 Appendix C: Derivations of Kendall’s Tau. . . . . . . . . . . . . . . . . . . . . . 24 Appendix D: Derivation of Ca½1;1(cid:3)ðu;vÞ Under the Frank Copula. . . . . . . 26 Appendix E: Derivation of Cq½1;0(cid:3)ðu;vÞ Under the Gaussian Copula . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ix x Contents 3 Estimation, Model Diagnosis, and Process Control Under the Normal Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Serial Dependence, Statistical Process Control, and Copulas . . . . . 29 3.2 Model and Likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Asymptotic Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Goodness-of-Fit Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7.1 Chemical Process Data. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7.2 Financial Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7.3 Baseball Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Appendix: R Codes for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Estimation Under Normal Mixture Models for Financial Time Series Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Copulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.2 Copula-Based Markov Chain . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Maximum Likelihood Estimators . . . . . . . . . . . . . . . . . . . 60 4.3.2 Interval Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.3 Initial Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Appendix: R codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Bayesian Estimation Under the t-Distribution for Financial Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Models and Likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 Copula-Based Markov Models . . . . . . . . . . . . . . . . . . . . . 74 5.2.2 Non-standardized t-Distribution . . . . . . . . . . . . . . . . . . . . 75 5.2.3 Likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 Estimation of Hyperparameters via Resampling. . . . . . . . . 77 5.3.2 Metropolis–Hastings Algorithm . . . . . . . . . . . . . . . . . . . . 79 Contents xi 5.4 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Appendix: Moment Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Control Charts of Mean by Using Copula Markov SPC and Conditional Distribution by Copula. . . . . . . . . . . . . . . . . . . . . . 87 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 Copula Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.1 Copula and Directional Dependence . . . . . . . . . . . . . . . . . 88 6.2.2 Copula Markov Statistical Process Control Chart. . . . . . . . 89 6.2.3 Control Charts of Mean by Using Copula Conditional Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3 Real Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Appendix: R Codes for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7 Copula Markov Models for Count Series with Excess Zeros . . . . . . 101 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2.1 Zero-Inflated Count Regression Models . . . . . . . . . . . . . . 103 7.3 Markov Chain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.3.1 First-Order Markov Models . . . . . . . . . . . . . . . . . . . . . . . 107 7.3.2 Second-Order Markov Models . . . . . . . . . . . . . . . . . . . . . 108 7.3.3 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.4 Statistical Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4.1 Log-Likelihood Functions . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4.2 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.5 Model Selection and Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.6 Arson Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Appendix A: Trivariate Max-Id Copula Function with Positive Stable LT and Bivariate Gumbel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Appendix B: R Codes for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 129

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.