ebook img

Control Theory for Linear Systems PDF

403 Pages·2001·1.673 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Control Theory for Linear Systems

Control theory for linear systems Harry L. Trentelman Research Instituteof Mathematics andComputer Science Universityof Groningen P.O. Box 800,9700AV Groningen The Netherlands Tel. +31-50-3633998 Fax. +31-50-3633976 E-mail. [email protected] AntonA. Stoorvogel Dept. ofMathematicsand ComputingScience EindhovenUniv. of Technology P.O.Box 513, 5600MB Eindhoven The Netherlands Tel. +31-40-2472378 Fax. +31-40-2442489 E-mail. [email protected] MaloHautus Dept. ofMathematicsand ComputingScience EindhovenUniv. of Technology P.O.Box 513, 5600MB Eindhoven The Netherlands Tel. +31-40-2472628 Fax. +31-40-2442489 E-mail. [email protected] 2 Preface Thisbookoriginatesfromseveraleditionsoflecturenotesthat wereusedas teach- ing material for the course ‘Control Theory for Linear Systems’, given within the frameworkofthenationalDutchgraduateschoolofsystemsandcontrol,inthepe- riodfrom1987to1999. Theaimofthiscourseistoprovideanextensivetreatment ofthetheoryoffeedbackcontroldesignforlinear,finite-dimensional,time-invariant statespacesystemswithinputsandoutputs. One of the important themes of control is the design of controllers that, while achievinganinternallystableclosedsystem,maketheinfluenceofcertainexogenous disturbanceinputsongivento-be-controlledoutputvariablesassmallaspossible.In- deed,intheappropriatesensethisthemeiscoveredbytheclassicallinearquadratic regulator problem and the linear quadratic Gaussian problem, as well as, more re- cently,bytheH2andH∞controlproblems.Mostoftheresearcheffortsonthelinear quadraticregulatorproblemandthelinearquadraticGaussianproblemtookplacein theperiodupto1975,whereasinparticularH∞controlhasbeentheimportantissue inthemostrecentperiod,startingaround1985. In,roughly,theintermediateperiod,from1970to1985,muchattentionwasat- tractedbycontroldesignproblemsthat requiretomakethe influenceoftheexoge- nousdisturbancesontheto-be-controlledoutputsequaltozero.Thestaticstatefeed- backversionsofthesecontroldesignproblems,oftencalleddisturbancedecoupling, or disturbancelocalization, problems were treated in the classical textbook‘Linear MultivariableControl: A Geometric Approach’,by W.M. Wonham. Around1980, acompletetheoryonthedisturbancedecouplingproblembydynamicmeasurement feedback became available. A central role in this theory is played by the geomet- ric(i.e.,linearalgebraic)propertiesofthecoefficientmatricesappearinginthesys- tem equations. In particular, the notions of (A,B)-invariantsubspace and (C,A)- invariantsubspaceplayanimportantrole. Thesenotions,andtheirgeneralizations, alsoturnedoutto becentralin understandingandclassifyingthe‘finestructure’of the system under consideration. For example, important dynamic properties such assysteminvertibility,strongobservability,strongdetectability,theminimumphase property,outputstabilizability,etc.,canbecharacterizedintermsofthesegeometric concepts. Thenotionsof(A,B)-invarianceand(C,A)-invariancealsoturnedoutto beinstrumentalinothersynthesisproblems,likeobserverdesign,problemsoftrack- ingandregulation,etc. vi Preface Inthisbook,wewilltreatboththe‘pre-1975’approachrepresentedbythelinear quadraticregulatorproblemandthe H controlproblem,as wellasthe‘post-1985’ 2 approachrepresentedbythe H∞ controlproblemanditsapplicationstorobustcon- trol.However,wefeelthatatextbookdedicatedtocontroltheoryforlinearstatespace systemsshouldalsocontainthecentralissuesofthe‘geometricapproach’,namelya treatmentofthedisturbancedecouplingproblembydynamicmeasurementfeedback, andthegeometricconceptsaroundthissynthesisproblem.Ourmotivationforthisis three-fold. Firstly, in a context of making the influence of the exogenous disturbances on theto-be-controlledoutputsassmallaspossible,itisnaturaltoaskfirstunderwhat conditionsontheplantthisinfluencecanactuallybemadetovanish,i.e.,underwhat conditionstheclosedlooptransfermatrixcanmadezerobychoosinganappropriate controller. Secondly,asalsomentionedabove,thenotionsofcontrolledinvarianceandcon- ditionedinvariance,andtheirgeneralizationsof weaklyunobservablesubspaceand stronglyreachablesubspace,playaveryimportantroleinstudyingthedynamicprop- ertiesofthesystem.Asanexample,thesystempropertyofstrongobservabilityholds ifandonlyifthesystemcoefficientmatriceshavethegeometricpropertythattheas- sociated weakly unobservable subspace is equal to zero. As another example, the systempropertyofleft-invertibilityholdsifandonlyiftheintersectionoftheweakly unobservablesubspace and the stronglyreachable subspace is equal to zero. Also, the importantnotionsofsystem transmissionpolynomialsand system zeros can be givenaninterpretationin termsoftheweaklyunobservablesubspace, etc. Inother words,agoodunderstandingofthefine,structural,dynamicpropertiesofthesystem goeshandinhandwithanunderstandingofthebasicgeometricpropertiesassociated withthesystemparametermatrices. Thirdly,alsointhelinearquadraticregulatorproblem,intheH controlproblem, 2 and in the H∞ control problem, the idea of disturbance decoupling and its associ- ated geometricconceptsplay an importantrole. For example, the notionof output stabilizability,andtheassociatedoutputstabilizablesubspaceofthesystem,turnout toberelevantinestablishingnecessaryandsufficientconditionsfortheexistenceof a positive semi-definite solution of the LQ algebraicRiccati equation. Also, by an appropriatetransformationofthesystemparametermatrices,theH controlproblem 2 can be transformed into a disturbance decoupling problem. In fact, any controller that achieves disturbancedecouplingfor the transformedsystem turns out to be an optimal controller for the original H2 problem. The same holds for the H∞ con- trolproblem:byanappropriatetransformationofthesystemparametermatrices,the originalproblemofmakingthe H∞ normoftheclosedlooptransfermatrixstrictly less than a given tolerance, is transformed into a disturbance decoupling problem. Anycontrollerthatachievesdisturbancedecouplingforthetransformedsystemturns outtoachievetherequiredstrictupperboundonH∞-normoftheclosedlooptransfer matrix. Theoutlineofthisbookisasfollows. Afterageneralintroductioninchapter1, andasummaryofthemathematicalprerequisitesinchapter2,chapter3ofthisbook Preface vii dealswiththebasicmaterialonlinearstatespacesystems.Wereviewcontrollability andobservability,thenotionsofcontrollableeigenvaluesandobservableeigenvalues, andbasistransformationsinstatespace. Thenwetreattheproblemofstabilization bydynamicmeasurementfeedback.Asintermediatestepsinthissynthesisproblem, wediscussstateobservers,detectability,theproblemofpoleplacementbystaticstate feedback,andthenotionofstabilizability. Thecentralissueofchapters4to6istheproblemofdisturbancedecouplingby dynamicmeasurementfeedback. First,inchapter4,weintroducethenotionofcon- trolled invariance,or (A,B)-invariance. As an immediateapplication, we treat the problemofdisturbancedecouplingbystaticstatefeedback.Next,weintroducecon- trollabilitysubspaces,andstabilizabilitysubspaces. Theseareusedtotreatthestatic statefeedbackversionsofthedisturbancedecouplingproblemwithinternalstability, andtheproblemofexternalstabilization.Inchapter5,weintroducethecentralnotion ofconditionedinvariance,or(C,A)-invariance. Next,wediscussdetectabilitysub- spaces,andtheirapplicationtotheproblemofdesigningestimatorsinthepresence ofexternaldisturbances. Inchapter6,wecombinethenotionsofcontrolledinvari- anceandconditionedinvarianceintothenotionof(C,A,B)-pairofsubspaces.Asan immediate,straightforward,applicationwetreatthedynamicmeasurementfeedback version of the disturbance decoupling problem. Next, we take stability issues into consideration,andconsider(C,A,B)-pairsofsubspacesconsistingofadetectability subspaceanda stabilizabilitysubspace. This structureis appliedto resolvethedy- namicmeasurementfeedbackversionoftheproblemofdisturbancedecouplingwith internalstability. Thefinalsubjectofchapter6istheapplicationoftheideaofpairs of(C,A,B)-pairstotheproblemofexternalstabilizationbydynamicmeasurement feedback. Chapters7 and8ofthis bookdealwithsystem structure. Inchapter7, we first giveareviewofsomebasicmaterialonpolynomialmatrices,elementaryoperations, Smith form, and left- and right-unimodularity. Then we introduce the notions of transmission polynomialsand zeros, in terms of the system matrix associated with thesystem. Wethendiscusstheweaklyunobservablesubspace,andtherelatedno- tion of strong observability, and finally give a characterization of the transmission polynomialsandzerosintermsofalinearmapassociatedwiththeweaklyunobserv- ablesubspace. Inchapter8wediscusstheideaofdistributionsasinputs. Allowing distributions(insteadofjustfunctions)asinputsgivesrisetosomenewconceptsin statespace,suchasthestronglyreachablesubspaceandthedistributionallyweakly unobservablesubspace. Thenotionsofsystemleft-andright-invertibilityareintro- duced, and characterized in terms of these new subspaces. The basic material on distributionsthatisusedinchapter8istreatedinappendixAofthisbook. In chapter 9 we treat the problem of tracking and regulation. In this problem, certainvariablesoftheplantarerequiredtotrackanapriorigivensignal,regardless ofthedisturbanceinputandtheinitialstateoftheplant.Boththesignaltobetracked as well as the disturbance input are modeled as being generated by an additional finite-dimensionallinearsystem,calledtheexosystem. Conditionsfortheexistence of a regulatorare givenin terms of the transmissionpolynomialsof certainsystem matricesassociatedwiththeinterconnectionoftheplantandtheexosystem.Wealso viii Preface address the issue of well-posedness of the regulator problem, and characterize this propertyintermsofright-invertibilityoftheplant,andtherelationbetweenthezeros oftheplantandthepolesoftheexosystem. Inchapter10we givea detailedtreatmentofthelinearquadraticregulatorpro- blem.First,weexplainhowtotransformthegeneralproblemtoaso-calledstandard problem. Then we treat the finite-horizon problem in terms of the solution of the Riccati differential equation. Next, we discuss the infinite-horizon problem, both the free-endpoint as well as the zero-endpoint problem, and characterize the opti- malcostandoptimalcontrollawsfortheseproblemsintermsofcertainsolutionsof thealgebraicRiccati equation. Finally, theresults arereformulatedforthegeneral, non-standardcase. Chapter11is aboutthe H controlproblem. First, we explainhowthe original 2 stochasticlinearquadraticGaussianproblemcanbereformulatedasthedeterminis- ticproblemofminimizingthe L normoftheclosedloopimpulseresponsematrix, 2 equivalently, the H -normof the closed loop transfer matrix. Then we discuss the 2 problemsofminimizingthisH -normovertheclassofallinternallystabilizingstatic 2 state feedback controllers, and over the class of all internally stabilizing dynamic measurementfeedbackcontrollers. Inbothcases,theoriginalproblemisreducedto a disturbancedecouplingproblembymeansoftransformationsinvolvingrealsym- metricsolutionsoftherelevantalgebraicRiccatiequations. Chapters12,13,14,and15dealwiththe H∞ controlproblem,andits applica- tion to problems of robust stabilization. In chapter 12, the H∞ control problem is introduced,and it is explainedhow it can be applied, via the celebratedsmall gain theorem,toproblemsofrobuststabilization.Next,chapter13givesacompletetreat- ment of the static state feedback version of the H∞ control problem, both for the finite-horizonaswellastheinfinitehorizoncase.Then,inchapter14,thegeneraldy- namicmeasurementfeedbackversionofthe H∞ controlproblemistreated. Again, both the finite, as well as the infinite horizonproblemare discussed. In particular, the celebratedresult onthe existenceof H∞ suboptimalcontrollersin terms of the existenceofsolutionsoftwoRiccatiequations,togetherwithacouplingcondition,is treated. Finally,inchapter15,theresultsofchapter14areappliedtotheproblemof robuststabilizationintroducedinchapter12. Thechaptercloseswithsomeremarks onthesingular H∞controlproblem,andwithadiscussionontheminimumentropy H∞controlproblem. Thebookcloseswithanappendixthatreviewsthebasicmaterialondistribution theory,asneededinchapter8. As mentionedin the first paragraphof this preface, the lecturenotes that ledto this bookwere usedas teachingmaterialforthecourse‘ControlTheoryforLinear Systems’oftheDutchgraduateschoolofsystemsandcontroloveraperiodofmany years. During this period, many former and present Ph.D. students taking courses withtheDutchgraduateschoolcontributedtothecontentsofthisbookthroughtheir critical remarks and suggestions. Also, most of the problems and exercises in this bookwereusedasproblemsinthetake-homeexamsthatwerepartofthecourse,so weretriedouton‘real’students.Wewanttotaketheopportunitytothankallformer Preface ix andpresentPh.D.studentsthatfollowedourcoursebetween1987and1999fortheir constructiveremarksonthecontentsofthisbook.Finally,wewanttothankthoseof ourcolleaguesthatencouragedustocompletetheprojectofconvertingtheoriginal setoflecturenotestothisbook. HarryL.Trentelman UniversityofGroningen,Groningen,TheNetherlands AntonA.Stoorvogel EindhovenUniversityofTechnology,Eindhoven,TheNetherlands MaloHautus EindhovenUniversityofTechnology,Eindhoven,TheNetherlands x Preface Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Controlsystemdesignandmathematicalcontroltheory . . . . . . . 1 1.2 Anexample:instabilityofthegeostationaryorbit . . . . . . . . . . 4 1.3 Linearcontrolsystems . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Example:linearizationaroundthegeostationaryorbit . . . . . . . . 7 1.5 Linearcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Example:stabilizingthegeostationaryorbit . . . . . . . . . . . . . 9 1.7 Example:regulationofthesatellite’sposition . . . . . . . . . . . . 10 1.8 Exogenousinputsandoutputstobecontrolled . . . . . . . . . . . . 10 1.9 Example:includingthemoon’sgravitationalfield . . . . . . . . . . 11 1.10 Robuststabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Mathematicalpreliminaries . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Linearspacesandsubspaces . . . . . . . . . . . . . . . . . . . . . 15 2.2 Linearmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Innerproductspaces . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Quotientspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Differentialequations . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 Rationalmatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Laplacetransformation . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 35 xii Contents 3 Systemswithinputsandoutputs . . . . . . . . . . . . . . . . . . . . . 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Controllability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Basistransformations . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 Controllableandobservableeigenvalues . . . . . . . . . . . . . . . 46 3.6 Single-variablesystems . . . . . . . . . . . . . . . . . . . . . . . . 48 3.7 Poles,eigenvaluesandstability . . . . . . . . . . . . . . . . . . . . 51 3.8 Liapunovfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.9 Thestabilizationproblem . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Stabilizationbystatefeedback . . . . . . . . . . . . . . . . . . . . 58 3.11 Stateobservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.12 Stabilizationbydynamicmeasurementfeedback. . . . . . . . . . . 65 3.13 Well-posedinterconnection . . . . . . . . . . . . . . . . . . . . . . 66 3.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.15 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 Controlledinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . . 75 4.1 Controlledinvariance . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Disturbancedecoupling . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Theinvariantsubspacealgorithm . . . . . . . . . . . . . . . . . . . 80 4.4 Controllabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Poleplacementunderinvarianceconstraints . . . . . . . . . . . . . 85 4.6 Stabilizabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 89 4.7 Disturbancedecouplingwithinternalstability . . . . . . . . . . . . 96 4.8 Externalstabilization . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.10 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 105 5 Conditionedinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . 107 5.1 Conditionedinvariance . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Detectabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3 Estimationinthepresenceofdisturbances . . . . . . . . . . . . . . 118 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 124

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.