Table Of ContentControl theory for linear systems
Harry L. Trentelman
Research Instituteof Mathematics
andComputer Science
Universityof Groningen
P.O. Box 800,9700AV Groningen
The Netherlands
Tel. +31-50-3633998
Fax. +31-50-3633976
E-mail. h.l.trentelman@math.rug.nl
AntonA. Stoorvogel
Dept. ofMathematicsand ComputingScience
EindhovenUniv. of Technology
P.O.Box 513, 5600MB Eindhoven
The Netherlands
Tel. +31-40-2472378
Fax. +31-40-2442489
E-mail. A.A.Stoorvogel@tue.nl
MaloHautus
Dept. ofMathematicsand ComputingScience
EindhovenUniv. of Technology
P.O.Box 513, 5600MB Eindhoven
The Netherlands
Tel. +31-40-2472628
Fax. +31-40-2442489
E-mail. M.L.J.Hautus@tue.nl
2
Preface
Thisbookoriginatesfromseveraleditionsoflecturenotesthat wereusedas teach-
ing material for the course ‘Control Theory for Linear Systems’, given within the
frameworkofthenationalDutchgraduateschoolofsystemsandcontrol,inthepe-
riodfrom1987to1999. Theaimofthiscourseistoprovideanextensivetreatment
ofthetheoryoffeedbackcontroldesignforlinear,finite-dimensional,time-invariant
statespacesystemswithinputsandoutputs.
One of the important themes of control is the design of controllers that, while
achievinganinternallystableclosedsystem,maketheinfluenceofcertainexogenous
disturbanceinputsongivento-be-controlledoutputvariablesassmallaspossible.In-
deed,intheappropriatesensethisthemeiscoveredbytheclassicallinearquadratic
regulator problem and the linear quadratic Gaussian problem, as well as, more re-
cently,bytheH2andH∞controlproblems.Mostoftheresearcheffortsonthelinear
quadraticregulatorproblemandthelinearquadraticGaussianproblemtookplacein
theperiodupto1975,whereasinparticularH∞controlhasbeentheimportantissue
inthemostrecentperiod,startingaround1985.
In,roughly,theintermediateperiod,from1970to1985,muchattentionwasat-
tractedbycontroldesignproblemsthat requiretomakethe influenceoftheexoge-
nousdisturbancesontheto-be-controlledoutputsequaltozero.Thestaticstatefeed-
backversionsofthesecontroldesignproblems,oftencalleddisturbancedecoupling,
or disturbancelocalization, problems were treated in the classical textbook‘Linear
MultivariableControl: A Geometric Approach’,by W.M. Wonham. Around1980,
acompletetheoryonthedisturbancedecouplingproblembydynamicmeasurement
feedback became available. A central role in this theory is played by the geomet-
ric(i.e.,linearalgebraic)propertiesofthecoefficientmatricesappearinginthesys-
tem equations. In particular, the notions of (A,B)-invariantsubspace and (C,A)-
invariantsubspaceplayanimportantrole. Thesenotions,andtheirgeneralizations,
alsoturnedoutto becentralin understandingandclassifyingthe‘finestructure’of
the system under consideration. For example, important dynamic properties such
assysteminvertibility,strongobservability,strongdetectability,theminimumphase
property,outputstabilizability,etc.,canbecharacterizedintermsofthesegeometric
concepts. Thenotionsof(A,B)-invarianceand(C,A)-invariancealsoturnedoutto
beinstrumentalinothersynthesisproblems,likeobserverdesign,problemsoftrack-
ingandregulation,etc.
vi Preface
Inthisbook,wewilltreatboththe‘pre-1975’approachrepresentedbythelinear
quadraticregulatorproblemandthe H controlproblem,as wellasthe‘post-1985’
2
approachrepresentedbythe H∞ controlproblemanditsapplicationstorobustcon-
trol.However,wefeelthatatextbookdedicatedtocontroltheoryforlinearstatespace
systemsshouldalsocontainthecentralissuesofthe‘geometricapproach’,namelya
treatmentofthedisturbancedecouplingproblembydynamicmeasurementfeedback,
andthegeometricconceptsaroundthissynthesisproblem.Ourmotivationforthisis
three-fold.
Firstly, in a context of making the influence of the exogenous disturbances on
theto-be-controlledoutputsassmallaspossible,itisnaturaltoaskfirstunderwhat
conditionsontheplantthisinfluencecanactuallybemadetovanish,i.e.,underwhat
conditionstheclosedlooptransfermatrixcanmadezerobychoosinganappropriate
controller.
Secondly,asalsomentionedabove,thenotionsofcontrolledinvarianceandcon-
ditionedinvariance,andtheirgeneralizationsof weaklyunobservablesubspaceand
stronglyreachablesubspace,playaveryimportantroleinstudyingthedynamicprop-
ertiesofthesystem.Asanexample,thesystempropertyofstrongobservabilityholds
ifandonlyifthesystemcoefficientmatriceshavethegeometricpropertythattheas-
sociated weakly unobservable subspace is equal to zero. As another example, the
systempropertyofleft-invertibilityholdsifandonlyiftheintersectionoftheweakly
unobservablesubspace and the stronglyreachable subspace is equal to zero. Also,
the importantnotionsofsystem transmissionpolynomialsand system zeros can be
givenaninterpretationin termsoftheweaklyunobservablesubspace, etc. Inother
words,agoodunderstandingofthefine,structural,dynamicpropertiesofthesystem
goeshandinhandwithanunderstandingofthebasicgeometricpropertiesassociated
withthesystemparametermatrices.
Thirdly,alsointhelinearquadraticregulatorproblem,intheH controlproblem,
2
and in the H∞ control problem, the idea of disturbance decoupling and its associ-
ated geometricconceptsplay an importantrole. For example, the notionof output
stabilizability,andtheassociatedoutputstabilizablesubspaceofthesystem,turnout
toberelevantinestablishingnecessaryandsufficientconditionsfortheexistenceof
a positive semi-definite solution of the LQ algebraicRiccati equation. Also, by an
appropriatetransformationofthesystemparametermatrices,theH controlproblem
2
can be transformed into a disturbance decoupling problem. In fact, any controller
that achieves disturbancedecouplingfor the transformedsystem turns out to be an
optimal controller for the original H2 problem. The same holds for the H∞ con-
trolproblem:byanappropriatetransformationofthesystemparametermatrices,the
originalproblemofmakingthe H∞ normoftheclosedlooptransfermatrixstrictly
less than a given tolerance, is transformed into a disturbance decoupling problem.
Anycontrollerthatachievesdisturbancedecouplingforthetransformedsystemturns
outtoachievetherequiredstrictupperboundonH∞-normoftheclosedlooptransfer
matrix.
Theoutlineofthisbookisasfollows. Afterageneralintroductioninchapter1,
andasummaryofthemathematicalprerequisitesinchapter2,chapter3ofthisbook
Preface vii
dealswiththebasicmaterialonlinearstatespacesystems.Wereviewcontrollability
andobservability,thenotionsofcontrollableeigenvaluesandobservableeigenvalues,
andbasistransformationsinstatespace. Thenwetreattheproblemofstabilization
bydynamicmeasurementfeedback.Asintermediatestepsinthissynthesisproblem,
wediscussstateobservers,detectability,theproblemofpoleplacementbystaticstate
feedback,andthenotionofstabilizability.
Thecentralissueofchapters4to6istheproblemofdisturbancedecouplingby
dynamicmeasurementfeedback. First,inchapter4,weintroducethenotionofcon-
trolled invariance,or (A,B)-invariance. As an immediateapplication, we treat the
problemofdisturbancedecouplingbystaticstatefeedback.Next,weintroducecon-
trollabilitysubspaces,andstabilizabilitysubspaces. Theseareusedtotreatthestatic
statefeedbackversionsofthedisturbancedecouplingproblemwithinternalstability,
andtheproblemofexternalstabilization.Inchapter5,weintroducethecentralnotion
ofconditionedinvariance,or(C,A)-invariance. Next,wediscussdetectabilitysub-
spaces,andtheirapplicationtotheproblemofdesigningestimatorsinthepresence
ofexternaldisturbances. Inchapter6,wecombinethenotionsofcontrolledinvari-
anceandconditionedinvarianceintothenotionof(C,A,B)-pairofsubspaces.Asan
immediate,straightforward,applicationwetreatthedynamicmeasurementfeedback
version of the disturbance decoupling problem. Next, we take stability issues into
consideration,andconsider(C,A,B)-pairsofsubspacesconsistingofadetectability
subspaceanda stabilizabilitysubspace. This structureis appliedto resolvethedy-
namicmeasurementfeedbackversionoftheproblemofdisturbancedecouplingwith
internalstability. Thefinalsubjectofchapter6istheapplicationoftheideaofpairs
of(C,A,B)-pairstotheproblemofexternalstabilizationbydynamicmeasurement
feedback.
Chapters7 and8ofthis bookdealwithsystem structure. Inchapter7, we first
giveareviewofsomebasicmaterialonpolynomialmatrices,elementaryoperations,
Smith form, and left- and right-unimodularity. Then we introduce the notions of
transmission polynomialsand zeros, in terms of the system matrix associated with
thesystem. Wethendiscusstheweaklyunobservablesubspace,andtherelatedno-
tion of strong observability, and finally give a characterization of the transmission
polynomialsandzerosintermsofalinearmapassociatedwiththeweaklyunobserv-
ablesubspace. Inchapter8wediscusstheideaofdistributionsasinputs. Allowing
distributions(insteadofjustfunctions)asinputsgivesrisetosomenewconceptsin
statespace,suchasthestronglyreachablesubspaceandthedistributionallyweakly
unobservablesubspace. Thenotionsofsystemleft-andright-invertibilityareintro-
duced, and characterized in terms of these new subspaces. The basic material on
distributionsthatisusedinchapter8istreatedinappendixAofthisbook.
In chapter 9 we treat the problem of tracking and regulation. In this problem,
certainvariablesoftheplantarerequiredtotrackanapriorigivensignal,regardless
ofthedisturbanceinputandtheinitialstateoftheplant.Boththesignaltobetracked
as well as the disturbance input are modeled as being generated by an additional
finite-dimensionallinearsystem,calledtheexosystem. Conditionsfortheexistence
of a regulatorare givenin terms of the transmissionpolynomialsof certainsystem
matricesassociatedwiththeinterconnectionoftheplantandtheexosystem.Wealso
viii Preface
address the issue of well-posedness of the regulator problem, and characterize this
propertyintermsofright-invertibilityoftheplant,andtherelationbetweenthezeros
oftheplantandthepolesoftheexosystem.
Inchapter10we givea detailedtreatmentofthelinearquadraticregulatorpro-
blem.First,weexplainhowtotransformthegeneralproblemtoaso-calledstandard
problem. Then we treat the finite-horizon problem in terms of the solution of the
Riccati differential equation. Next, we discuss the infinite-horizon problem, both
the free-endpoint as well as the zero-endpoint problem, and characterize the opti-
malcostandoptimalcontrollawsfortheseproblemsintermsofcertainsolutionsof
thealgebraicRiccati equation. Finally, theresults arereformulatedforthegeneral,
non-standardcase.
Chapter11is aboutthe H controlproblem. First, we explainhowthe original
2
stochasticlinearquadraticGaussianproblemcanbereformulatedasthedeterminis-
ticproblemofminimizingthe L normoftheclosedloopimpulseresponsematrix,
2
equivalently, the H -normof the closed loop transfer matrix. Then we discuss the
2
problemsofminimizingthisH -normovertheclassofallinternallystabilizingstatic
2
state feedback controllers, and over the class of all internally stabilizing dynamic
measurementfeedbackcontrollers. Inbothcases,theoriginalproblemisreducedto
a disturbancedecouplingproblembymeansoftransformationsinvolvingrealsym-
metricsolutionsoftherelevantalgebraicRiccatiequations.
Chapters12,13,14,and15dealwiththe H∞ controlproblem,andits applica-
tion to problems of robust stabilization. In chapter 12, the H∞ control problem is
introduced,and it is explainedhow it can be applied, via the celebratedsmall gain
theorem,toproblemsofrobuststabilization.Next,chapter13givesacompletetreat-
ment of the static state feedback version of the H∞ control problem, both for the
finite-horizonaswellastheinfinitehorizoncase.Then,inchapter14,thegeneraldy-
namicmeasurementfeedbackversionofthe H∞ controlproblemistreated. Again,
both the finite, as well as the infinite horizonproblemare discussed. In particular,
the celebratedresult onthe existenceof H∞ suboptimalcontrollersin terms of the
existenceofsolutionsoftwoRiccatiequations,togetherwithacouplingcondition,is
treated. Finally,inchapter15,theresultsofchapter14areappliedtotheproblemof
robuststabilizationintroducedinchapter12. Thechaptercloseswithsomeremarks
onthesingular H∞controlproblem,andwithadiscussionontheminimumentropy
H∞controlproblem.
Thebookcloseswithanappendixthatreviewsthebasicmaterialondistribution
theory,asneededinchapter8.
As mentionedin the first paragraphof this preface, the lecturenotes that ledto
this bookwere usedas teachingmaterialforthecourse‘ControlTheoryforLinear
Systems’oftheDutchgraduateschoolofsystemsandcontroloveraperiodofmany
years. During this period, many former and present Ph.D. students taking courses
withtheDutchgraduateschoolcontributedtothecontentsofthisbookthroughtheir
critical remarks and suggestions. Also, most of the problems and exercises in this
bookwereusedasproblemsinthetake-homeexamsthatwerepartofthecourse,so
weretriedouton‘real’students.Wewanttotaketheopportunitytothankallformer
Preface ix
andpresentPh.D.studentsthatfollowedourcoursebetween1987and1999fortheir
constructiveremarksonthecontentsofthisbook.Finally,wewanttothankthoseof
ourcolleaguesthatencouragedustocompletetheprojectofconvertingtheoriginal
setoflecturenotestothisbook.
HarryL.Trentelman
UniversityofGroningen,Groningen,TheNetherlands
AntonA.Stoorvogel
EindhovenUniversityofTechnology,Eindhoven,TheNetherlands
MaloHautus
EindhovenUniversityofTechnology,Eindhoven,TheNetherlands
x Preface
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Controlsystemdesignandmathematicalcontroltheory . . . . . . . 1
1.2 Anexample:instabilityofthegeostationaryorbit . . . . . . . . . . 4
1.3 Linearcontrolsystems . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Example:linearizationaroundthegeostationaryorbit . . . . . . . . 7
1.5 Linearcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Example:stabilizingthegeostationaryorbit . . . . . . . . . . . . . 9
1.7 Example:regulationofthesatellite’sposition . . . . . . . . . . . . 10
1.8 Exogenousinputsandoutputstobecontrolled . . . . . . . . . . . . 10
1.9 Example:includingthemoon’sgravitationalfield . . . . . . . . . . 11
1.10 Robuststabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Mathematicalpreliminaries . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Linearspacesandsubspaces . . . . . . . . . . . . . . . . . . . . . 15
2.2 Linearmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Innerproductspaces . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Quotientspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Differentialequations . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Rationalmatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Laplacetransformation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 35
xii Contents
3 Systemswithinputsandoutputs . . . . . . . . . . . . . . . . . . . . . 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Controllability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Basistransformations . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Controllableandobservableeigenvalues . . . . . . . . . . . . . . . 46
3.6 Single-variablesystems . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Poles,eigenvaluesandstability . . . . . . . . . . . . . . . . . . . . 51
3.8 Liapunovfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 Thestabilizationproblem . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Stabilizationbystatefeedback . . . . . . . . . . . . . . . . . . . . 58
3.11 Stateobservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.12 Stabilizationbydynamicmeasurementfeedback. . . . . . . . . . . 65
3.13 Well-posedinterconnection . . . . . . . . . . . . . . . . . . . . . . 66
3.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.15 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 73
4 Controlledinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Controlledinvariance . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Disturbancedecoupling . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Theinvariantsubspacealgorithm . . . . . . . . . . . . . . . . . . . 80
4.4 Controllabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Poleplacementunderinvarianceconstraints . . . . . . . . . . . . . 85
4.6 Stabilizabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Disturbancedecouplingwithinternalstability . . . . . . . . . . . . 96
4.8 Externalstabilization . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.10 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Conditionedinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . 107
5.1 Conditionedinvariance . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Detectabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Estimationinthepresenceofdisturbances . . . . . . . . . . . . . . 118
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 124