Control theory for linear systems Harry L. Trentelman Research Instituteof Mathematics andComputer Science Universityof Groningen P.O. Box 800,9700AV Groningen The Netherlands Tel. +31-50-3633998 Fax. +31-50-3633976 E-mail. [email protected] AntonA. Stoorvogel Dept. ofMathematicsand ComputingScience EindhovenUniv. of Technology P.O.Box 513, 5600MB Eindhoven The Netherlands Tel. +31-40-2472378 Fax. +31-40-2442489 E-mail. [email protected] MaloHautus Dept. ofMathematicsand ComputingScience EindhovenUniv. of Technology P.O.Box 513, 5600MB Eindhoven The Netherlands Tel. +31-40-2472628 Fax. +31-40-2442489 E-mail. [email protected] 2 Preface Thisbookoriginatesfromseveraleditionsoflecturenotesthat wereusedas teach- ing material for the course ‘Control Theory for Linear Systems’, given within the frameworkofthenationalDutchgraduateschoolofsystemsandcontrol,inthepe- riodfrom1987to1999. Theaimofthiscourseistoprovideanextensivetreatment ofthetheoryoffeedbackcontroldesignforlinear,finite-dimensional,time-invariant statespacesystemswithinputsandoutputs. One of the important themes of control is the design of controllers that, while achievinganinternallystableclosedsystem,maketheinfluenceofcertainexogenous disturbanceinputsongivento-be-controlledoutputvariablesassmallaspossible.In- deed,intheappropriatesensethisthemeiscoveredbytheclassicallinearquadratic regulator problem and the linear quadratic Gaussian problem, as well as, more re- cently,bytheH2andH∞controlproblems.Mostoftheresearcheffortsonthelinear quadraticregulatorproblemandthelinearquadraticGaussianproblemtookplacein theperiodupto1975,whereasinparticularH∞controlhasbeentheimportantissue inthemostrecentperiod,startingaround1985. In,roughly,theintermediateperiod,from1970to1985,muchattentionwasat- tractedbycontroldesignproblemsthat requiretomakethe influenceoftheexoge- nousdisturbancesontheto-be-controlledoutputsequaltozero.Thestaticstatefeed- backversionsofthesecontroldesignproblems,oftencalleddisturbancedecoupling, or disturbancelocalization, problems were treated in the classical textbook‘Linear MultivariableControl: A Geometric Approach’,by W.M. Wonham. Around1980, acompletetheoryonthedisturbancedecouplingproblembydynamicmeasurement feedback became available. A central role in this theory is played by the geomet- ric(i.e.,linearalgebraic)propertiesofthecoefficientmatricesappearinginthesys- tem equations. In particular, the notions of (A,B)-invariantsubspace and (C,A)- invariantsubspaceplayanimportantrole. Thesenotions,andtheirgeneralizations, alsoturnedoutto becentralin understandingandclassifyingthe‘finestructure’of the system under consideration. For example, important dynamic properties such assysteminvertibility,strongobservability,strongdetectability,theminimumphase property,outputstabilizability,etc.,canbecharacterizedintermsofthesegeometric concepts. Thenotionsof(A,B)-invarianceand(C,A)-invariancealsoturnedoutto beinstrumentalinothersynthesisproblems,likeobserverdesign,problemsoftrack- ingandregulation,etc. vi Preface Inthisbook,wewilltreatboththe‘pre-1975’approachrepresentedbythelinear quadraticregulatorproblemandthe H controlproblem,as wellasthe‘post-1985’ 2 approachrepresentedbythe H∞ controlproblemanditsapplicationstorobustcon- trol.However,wefeelthatatextbookdedicatedtocontroltheoryforlinearstatespace systemsshouldalsocontainthecentralissuesofthe‘geometricapproach’,namelya treatmentofthedisturbancedecouplingproblembydynamicmeasurementfeedback, andthegeometricconceptsaroundthissynthesisproblem.Ourmotivationforthisis three-fold. Firstly, in a context of making the influence of the exogenous disturbances on theto-be-controlledoutputsassmallaspossible,itisnaturaltoaskfirstunderwhat conditionsontheplantthisinfluencecanactuallybemadetovanish,i.e.,underwhat conditionstheclosedlooptransfermatrixcanmadezerobychoosinganappropriate controller. Secondly,asalsomentionedabove,thenotionsofcontrolledinvarianceandcon- ditionedinvariance,andtheirgeneralizationsof weaklyunobservablesubspaceand stronglyreachablesubspace,playaveryimportantroleinstudyingthedynamicprop- ertiesofthesystem.Asanexample,thesystempropertyofstrongobservabilityholds ifandonlyifthesystemcoefficientmatriceshavethegeometricpropertythattheas- sociated weakly unobservable subspace is equal to zero. As another example, the systempropertyofleft-invertibilityholdsifandonlyiftheintersectionoftheweakly unobservablesubspace and the stronglyreachable subspace is equal to zero. Also, the importantnotionsofsystem transmissionpolynomialsand system zeros can be givenaninterpretationin termsoftheweaklyunobservablesubspace, etc. Inother words,agoodunderstandingofthefine,structural,dynamicpropertiesofthesystem goeshandinhandwithanunderstandingofthebasicgeometricpropertiesassociated withthesystemparametermatrices. Thirdly,alsointhelinearquadraticregulatorproblem,intheH controlproblem, 2 and in the H∞ control problem, the idea of disturbance decoupling and its associ- ated geometricconceptsplay an importantrole. For example, the notionof output stabilizability,andtheassociatedoutputstabilizablesubspaceofthesystem,turnout toberelevantinestablishingnecessaryandsufficientconditionsfortheexistenceof a positive semi-definite solution of the LQ algebraicRiccati equation. Also, by an appropriatetransformationofthesystemparametermatrices,theH controlproblem 2 can be transformed into a disturbance decoupling problem. In fact, any controller that achieves disturbancedecouplingfor the transformedsystem turns out to be an optimal controller for the original H2 problem. The same holds for the H∞ con- trolproblem:byanappropriatetransformationofthesystemparametermatrices,the originalproblemofmakingthe H∞ normoftheclosedlooptransfermatrixstrictly less than a given tolerance, is transformed into a disturbance decoupling problem. Anycontrollerthatachievesdisturbancedecouplingforthetransformedsystemturns outtoachievetherequiredstrictupperboundonH∞-normoftheclosedlooptransfer matrix. Theoutlineofthisbookisasfollows. Afterageneralintroductioninchapter1, andasummaryofthemathematicalprerequisitesinchapter2,chapter3ofthisbook Preface vii dealswiththebasicmaterialonlinearstatespacesystems.Wereviewcontrollability andobservability,thenotionsofcontrollableeigenvaluesandobservableeigenvalues, andbasistransformationsinstatespace. Thenwetreattheproblemofstabilization bydynamicmeasurementfeedback.Asintermediatestepsinthissynthesisproblem, wediscussstateobservers,detectability,theproblemofpoleplacementbystaticstate feedback,andthenotionofstabilizability. Thecentralissueofchapters4to6istheproblemofdisturbancedecouplingby dynamicmeasurementfeedback. First,inchapter4,weintroducethenotionofcon- trolled invariance,or (A,B)-invariance. As an immediateapplication, we treat the problemofdisturbancedecouplingbystaticstatefeedback.Next,weintroducecon- trollabilitysubspaces,andstabilizabilitysubspaces. Theseareusedtotreatthestatic statefeedbackversionsofthedisturbancedecouplingproblemwithinternalstability, andtheproblemofexternalstabilization.Inchapter5,weintroducethecentralnotion ofconditionedinvariance,or(C,A)-invariance. Next,wediscussdetectabilitysub- spaces,andtheirapplicationtotheproblemofdesigningestimatorsinthepresence ofexternaldisturbances. Inchapter6,wecombinethenotionsofcontrolledinvari- anceandconditionedinvarianceintothenotionof(C,A,B)-pairofsubspaces.Asan immediate,straightforward,applicationwetreatthedynamicmeasurementfeedback version of the disturbance decoupling problem. Next, we take stability issues into consideration,andconsider(C,A,B)-pairsofsubspacesconsistingofadetectability subspaceanda stabilizabilitysubspace. This structureis appliedto resolvethedy- namicmeasurementfeedbackversionoftheproblemofdisturbancedecouplingwith internalstability. Thefinalsubjectofchapter6istheapplicationoftheideaofpairs of(C,A,B)-pairstotheproblemofexternalstabilizationbydynamicmeasurement feedback. Chapters7 and8ofthis bookdealwithsystem structure. Inchapter7, we first giveareviewofsomebasicmaterialonpolynomialmatrices,elementaryoperations, Smith form, and left- and right-unimodularity. Then we introduce the notions of transmission polynomialsand zeros, in terms of the system matrix associated with thesystem. Wethendiscusstheweaklyunobservablesubspace,andtherelatedno- tion of strong observability, and finally give a characterization of the transmission polynomialsandzerosintermsofalinearmapassociatedwiththeweaklyunobserv- ablesubspace. Inchapter8wediscusstheideaofdistributionsasinputs. Allowing distributions(insteadofjustfunctions)asinputsgivesrisetosomenewconceptsin statespace,suchasthestronglyreachablesubspaceandthedistributionallyweakly unobservablesubspace. Thenotionsofsystemleft-andright-invertibilityareintro- duced, and characterized in terms of these new subspaces. The basic material on distributionsthatisusedinchapter8istreatedinappendixAofthisbook. In chapter 9 we treat the problem of tracking and regulation. In this problem, certainvariablesoftheplantarerequiredtotrackanapriorigivensignal,regardless ofthedisturbanceinputandtheinitialstateoftheplant.Boththesignaltobetracked as well as the disturbance input are modeled as being generated by an additional finite-dimensionallinearsystem,calledtheexosystem. Conditionsfortheexistence of a regulatorare givenin terms of the transmissionpolynomialsof certainsystem matricesassociatedwiththeinterconnectionoftheplantandtheexosystem.Wealso viii Preface address the issue of well-posedness of the regulator problem, and characterize this propertyintermsofright-invertibilityoftheplant,andtherelationbetweenthezeros oftheplantandthepolesoftheexosystem. Inchapter10we givea detailedtreatmentofthelinearquadraticregulatorpro- blem.First,weexplainhowtotransformthegeneralproblemtoaso-calledstandard problem. Then we treat the finite-horizon problem in terms of the solution of the Riccati differential equation. Next, we discuss the infinite-horizon problem, both the free-endpoint as well as the zero-endpoint problem, and characterize the opti- malcostandoptimalcontrollawsfortheseproblemsintermsofcertainsolutionsof thealgebraicRiccati equation. Finally, theresults arereformulatedforthegeneral, non-standardcase. Chapter11is aboutthe H controlproblem. First, we explainhowthe original 2 stochasticlinearquadraticGaussianproblemcanbereformulatedasthedeterminis- ticproblemofminimizingthe L normoftheclosedloopimpulseresponsematrix, 2 equivalently, the H -normof the closed loop transfer matrix. Then we discuss the 2 problemsofminimizingthisH -normovertheclassofallinternallystabilizingstatic 2 state feedback controllers, and over the class of all internally stabilizing dynamic measurementfeedbackcontrollers. Inbothcases,theoriginalproblemisreducedto a disturbancedecouplingproblembymeansoftransformationsinvolvingrealsym- metricsolutionsoftherelevantalgebraicRiccatiequations. Chapters12,13,14,and15dealwiththe H∞ controlproblem,andits applica- tion to problems of robust stabilization. In chapter 12, the H∞ control problem is introduced,and it is explainedhow it can be applied, via the celebratedsmall gain theorem,toproblemsofrobuststabilization.Next,chapter13givesacompletetreat- ment of the static state feedback version of the H∞ control problem, both for the finite-horizonaswellastheinfinitehorizoncase.Then,inchapter14,thegeneraldy- namicmeasurementfeedbackversionofthe H∞ controlproblemistreated. Again, both the finite, as well as the infinite horizonproblemare discussed. In particular, the celebratedresult onthe existenceof H∞ suboptimalcontrollersin terms of the existenceofsolutionsoftwoRiccatiequations,togetherwithacouplingcondition,is treated. Finally,inchapter15,theresultsofchapter14areappliedtotheproblemof robuststabilizationintroducedinchapter12. Thechaptercloseswithsomeremarks onthesingular H∞controlproblem,andwithadiscussionontheminimumentropy H∞controlproblem. Thebookcloseswithanappendixthatreviewsthebasicmaterialondistribution theory,asneededinchapter8. As mentionedin the first paragraphof this preface, the lecturenotes that ledto this bookwere usedas teachingmaterialforthecourse‘ControlTheoryforLinear Systems’oftheDutchgraduateschoolofsystemsandcontroloveraperiodofmany years. During this period, many former and present Ph.D. students taking courses withtheDutchgraduateschoolcontributedtothecontentsofthisbookthroughtheir critical remarks and suggestions. Also, most of the problems and exercises in this bookwereusedasproblemsinthetake-homeexamsthatwerepartofthecourse,so weretriedouton‘real’students.Wewanttotaketheopportunitytothankallformer Preface ix andpresentPh.D.studentsthatfollowedourcoursebetween1987and1999fortheir constructiveremarksonthecontentsofthisbook.Finally,wewanttothankthoseof ourcolleaguesthatencouragedustocompletetheprojectofconvertingtheoriginal setoflecturenotestothisbook. HarryL.Trentelman UniversityofGroningen,Groningen,TheNetherlands AntonA.Stoorvogel EindhovenUniversityofTechnology,Eindhoven,TheNetherlands MaloHautus EindhovenUniversityofTechnology,Eindhoven,TheNetherlands x Preface Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Controlsystemdesignandmathematicalcontroltheory . . . . . . . 1 1.2 Anexample:instabilityofthegeostationaryorbit . . . . . . . . . . 4 1.3 Linearcontrolsystems . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Example:linearizationaroundthegeostationaryorbit . . . . . . . . 7 1.5 Linearcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Example:stabilizingthegeostationaryorbit . . . . . . . . . . . . . 9 1.7 Example:regulationofthesatellite’sposition . . . . . . . . . . . . 10 1.8 Exogenousinputsandoutputstobecontrolled . . . . . . . . . . . . 10 1.9 Example:includingthemoon’sgravitationalfield . . . . . . . . . . 11 1.10 Robuststabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Mathematicalpreliminaries . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Linearspacesandsubspaces . . . . . . . . . . . . . . . . . . . . . 15 2.2 Linearmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Innerproductspaces . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Quotientspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Differentialequations . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 Rationalmatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Laplacetransformation . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 35 xii Contents 3 Systemswithinputsandoutputs . . . . . . . . . . . . . . . . . . . . . 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Controllability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Basistransformations . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 Controllableandobservableeigenvalues . . . . . . . . . . . . . . . 46 3.6 Single-variablesystems . . . . . . . . . . . . . . . . . . . . . . . . 48 3.7 Poles,eigenvaluesandstability . . . . . . . . . . . . . . . . . . . . 51 3.8 Liapunovfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.9 Thestabilizationproblem . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Stabilizationbystatefeedback . . . . . . . . . . . . . . . . . . . . 58 3.11 Stateobservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.12 Stabilizationbydynamicmeasurementfeedback. . . . . . . . . . . 65 3.13 Well-posedinterconnection . . . . . . . . . . . . . . . . . . . . . . 66 3.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.15 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 Controlledinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . . 75 4.1 Controlledinvariance . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Disturbancedecoupling . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Theinvariantsubspacealgorithm . . . . . . . . . . . . . . . . . . . 80 4.4 Controllabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Poleplacementunderinvarianceconstraints . . . . . . . . . . . . . 85 4.6 Stabilizabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . 89 4.7 Disturbancedecouplingwithinternalstability . . . . . . . . . . . . 96 4.8 Externalstabilization . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.10 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 105 5 Conditionedinvariantsubspaces . . . . . . . . . . . . . . . . . . . . . 107 5.1 Conditionedinvariance . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Detectabilitysubspaces . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3 Estimationinthepresenceofdisturbances . . . . . . . . . . . . . . 118 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5 Notesandreferences . . . . . . . . . . . . . . . . . . . . . . . . . 124