ebook img

Control of Cracking in Reinforced Concrete Structures PDF

245 Pages·2016·14.169 MB·English
by  BarreFrancis
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Control of Cracking in Reinforced Concrete Structures

Control of Cracking in Reinforced Concrete Structures Series Editor Jacky Mazars Control of Cracking in Reinforced Concrete Structures Research Project CEOS.fr Francis Barre, Philippe Bisch, Danièle Chauvel, Jacques Cortade, Jean-François Coste, Jean-Philippe Dubois, Silvano Erlicher, Etienne Gallitre, Pierre Labbé, Jacky Mazars, Claude Rospars, Alain Sellier, Jean-Michel Torrenti, François Toutlemonde First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2016 The rights of Research Project CEOS.Fr to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016941705 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-052-2 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Chapter 1. CEOS.fr Project Presentation . . . . . . . . . . . . . . . . . . . 1 1.1. CEOS.fr work program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1. Tests on prismatic full-scale blocks . . . . . . . . . . . . . . . . . . . 2 1.2.2. Tests on 1/3-scale beams . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3. Tests on 1/3-scale shear walls . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4. Tests on ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3. Modeling and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1. MEFISTO research program . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2. Benchmarks and workshops . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4. Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5. Database and specimen storage . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.1. Database CHEOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.2. Specimen storage (Renardières site) . . . . . . . . . . . . . . . . . . . 26 Chapter 2. Hydration Effects of Concrete at an Early Age and the Scale Effect . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1. Hydration effects of concrete at an early age . . . . . . . . . . . . . . . . 27 2.1.1. Global heating and cooling of a concrete element . . . . . . . . . . . 28 vi Control of Cracking in Reinforced Concrete Structures 2.1.2. Differential temperature between concrete core and surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2. Scale effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1. Scale effect principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.2. Calculating scale effect according to Weibull theory . . . . . . . . . 33 2.2.3. Worked examples of calculation with the scale effect according to the Weibull model . . . . . . . . . . . . . . . . . . 37 2.2.4. Application of Weibull integral in bending and in tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 3. Cracking of Ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1. Design values and limit values . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2. Adjusting the design value for verification purposes . . . . . . . . . . . 47 3.3. Crack spacing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.1. Linear equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2. Relationship between the maximum spacing S and the mean spacing S . . . . . . . . . . . . . . . . . . . . . . . . . 49 r,max r,m 3.3.3. Equation based on the MC2010 bond-slip relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4. Equation for the mean differential strain . . . . . . . . . . . . . . . . . . . 50 3.5. Model accuracy when calculating the strain and crack width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6. Example of the application of the cracking equations to a concrete tie in tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 4. Cracking of Beams Under Mechanical Flexural Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1. Crack spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2. Crack width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1. Tensile stress–strain curve . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.2. Calculating the crack width from the relative strain . . . . . . . . . 61 4.2.3. Calculating the crack width by interpolation between uncracked and fully cracked conditions (the ζ method) . . . . . . 62 4.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.1. Example 1: calculation of crack spacing and crack width in a thick concrete slab under heavy loads . . . . . . . . . . . 69 4.3.2. Example 2: calculation of crack spacing and crack width in a double thick beam . . . . . . . . . . . . . . . . . . . . . . . 71 Contents vii Chapter 5. Cracking in Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1. Current status of the reference texts . . . . . . . . . . . . . . . . . . . . . 75 5.2. Validity of the physical model and calculating of the crack angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3. Calculation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4. Crack spacing and slippage length . . . . . . . . . . . . . . . . . . . . . . 79 5.5. Mean differential strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.6. Calculating the crack width from reinforcing bar strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.7. Calculating the crack width in accordance with the strut and tie model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.8. Recommendations for evaluating the cracking in walls subject to earthquake situations . . . . . . . . . . . . . . . . . . . . . 91 5.9. Examples of application of cracking equations in a wall subjected to a shear stress in the plane of the wall . . . . . . . . . . 92 5.9.1. Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.9.2. Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.9.3. Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Chapter 6. Minimum Reinforcement of Thick Concrete Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1. Reinforcement of reinforced concrete ties . . . . . . . . . . . . . . . . . . 106 6.1.1. Detailed calculation from a 3D approach . . . . . . . . . . . . . . . . 106 6.1.2. Simplified methodology for calculating concrete reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2. Reinforcement of prestressed concrete ties . . . . . . . . . . . . . . . . . 111 6.2.1. Crack formation in an element in tension . . . . . . . . . . . . . . . . 112 6.2.2. Stabilized cracking stage in an element in tension . . . . . . . . . . 113 6.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3. Reinforcement of beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3.1. Beams under monotonic mechanical loading . . . . . . . . . . . . . 115 6.3.2. Beams under imposed deformation and monotonic mechanical loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4. Reinforcement of walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.1. Walls without specific requirements for cracking . . . . . . . . . . . 116 6.4.2. Walls with specific requirements for cracking . . . . . . . . . . . . . 117 Chapter 7. Shrinkage, Creep and Other Concrete Properties . . . . . 119 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2. Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 viii Control of Cracking in Reinforced Concrete Structures 7.2.2. Range of applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2.3. Initial strain at loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3. Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3.1. Autogenous shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3.2. Drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.4. Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.4.1. Assumptions and related basic equation . . . . . . . . . . . . . . . . 129 7.4.2. Basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.4.3. Drying creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.5. Experimental identification procedures . . . . . . . . . . . . . . . . . . . 133 7.5.1. Initial strain at loading time . . . . . . . . . . . . . . . . . . . . . . . . 134 7.5.2. Shrinkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.5.3. Basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.5.4. Drying creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.5.5. Estimation of long-term delayed strain . . . . . . . . . . . . . . . . . 134 7.6. Temperature effects on concrete properties . . . . . . . . . . . . . . . . . 135 7.6.1. Temperature effects on instantaneous concrete characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.6.2. Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.6.3. Thermal expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.6.4. Compressive strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.6.5. Tensile strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.6.6. Fracture energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.7. Elasticity modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.8. Temperature effects on the delayed deformations . . . . . . . . . . . 139 7.6.9. Autogenous shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.6.10. Drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Chapter 8. Cracking of Beams and Walls Subject to Restrained Deformations at SLS . . . . . . . . . . . . . . . . . . . . . . . 143 8.1. Evaluation of shrinkage with bulk heating and cooling of concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.2. Estimating and limiting crack widths . . . . . . . . . . . . . . . . . . . . . 145 8.3. Estimating restraints at SLS . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.3.1. Approximate calculation of external restraint . . . . . . . . . . . . . 146 8.3.2. Detailed calculation of a restraint on a wall . . . . . . . . . . . . . . 147 8.4. Estimation of stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.4.1. General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.4.2. Simplified method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.4.3. Principles of the detailed method . . . . . . . . . . . . . . . . . . . . 154 8.4.4. Worked example of a massive element thermal gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Contents ix Chapter 9. Effects of Various Phenomena in Combination . . . . . . 163 9.1. Estimating crack width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.2. Combining effects due to imposed deformations and deformations resulting from in-service loadings . . . . . . . . . . . . . . 164 9.2.1. Structures with water or air tightness requirements . . . . . . . . . . 165 9.2.2. Structures with durability requirements . . . . . . . . . . . . . . . . . 167 9.2.3. Minimum reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Chapter 10. Numerical Modeling: a Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.3. Thermal and hydration effects . . . . . . . . . . . . . . . . . . . . . . . . 173 10.4. Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.5. Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.5.1. Hydration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.5.2. Permanent basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . 178 10.5.3. Reversible basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . 180 10.5.4. Influence of temperature on the creep velocity . . . . . . . . . . . . 181 10.5.5. Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 10.5.6. Drying creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 10.5.7. Steel-concrete composite modeling . . . . . . . . . . . . . . . . . . 183 10.5.8. Statistical scale effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 10.6. Example simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.6.1. Thermal and hydration simulation . . . . . . . . . . . . . . . . . . . 185 Chapter 11. Recommendations for the use of Measurements on Mock-up Test Facilities and Structures . . . . . . . . . . . . . . . . . . 189 11.1. General methodology of the measurements . . . . . . . . . . . . . . . . 190 11.1.1. Preliminary general approach . . . . . . . . . . . . . . . . . . . . . . 192 11.1.2. Selection and choice of measuring devices . . . . . . . . . . . . . . 193 11.1.3. Method of measurement selection . . . . . . . . . . . . . . . . . . . 194 11.1.4. Measurement data-mining and analysis . . . . . . . . . . . . . . . . 194 11.2. Mock-up measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.2.1. Measurement of parameters . . . . . . . . . . . . . . . . . . . . . . . 197 11.2.2. Data acquisition and storage . . . . . . . . . . . . . . . . . . . . . . . 207 11.3. Measurement of structures . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.3.1. Preliminary measurements . . . . . . . . . . . . . . . . . . . . . . . . 210 11.3.2. Parameters to be measured. . . . . . . . . . . . . . . . . . . . . . . . 210 11.3.3. Equipment of the measurements . . . . . . . . . . . . . . . . . . . . 211 11.3.4. Formwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 x Control of Cracking in Reinforced Concrete Structures 11.4. Example of measurement instrumentation on massive structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.5. Example of mock-up test instrumentation . . . . . . . . . . . . . . . . . 213 11.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Foreword The control of cracking in reinforced and prestressed concrete is an essential factor in ensuring the reliability and durability of structures, together with many other important properties including water-tightness and air-tightness. Eurocode 2 (EC2) and, more recently, fib Model Code 2010 (MC2010) address the durability of structures and contain guidelines and rules for estimating and limiting cracking as a function of the characteristics of concrete and its reinforcement, and the exposure classifications of the works. However, these rules are normally only intended to be applied to the most common design situations. As a result, they do not take sufficient account of the behaviour of works containing massive reinforced and prestressed concrete structures, nor works which are subject to special service requirements in terms of water-tightness and air-tightness or service life and so forth. These rules are also inadequate for works requiring enhanced load protection against natural hazards or external attack. In these works, thermo- hydro-mechanical (THM) effects, scale effects and structural effects can all result in specific cracking behavior. In the case of thick rafts and walls, shrinkage and creep shall be taken into account, both in early-age concrete and in the long-term. The purpose of this book is to provide further guidelines which can extend the existing standards and codes to cover these types of special works, especially those which are massive in nature, taking account of their

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.