ebook img

Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions PDF

249 Pages·2013·1.547 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions

(cid:105) (cid:105) “K15099” — 2012/8/24 — 9:23 (cid:105) (cid:105) Continuous Time Dynamical Systems State Estimation and Optimal Control with Orthogonal Functions B. M. Mohan S. K. Kar Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K15099” — 2012/8/24 — 9:23 (cid:105) (cid:105) CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20120822 International Standard Book Number: 978-1-4665-1729-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Mohan, B. M. (Bosukonda Murali) Continuous time dynamical systems : state estimation and optimal control with orthogonal functions / B.M. Mohan, S.K. Kar. p. cm. Includes bibliographical references and index. ISBN 978-1-4665-1729-5 (hardback) 1. Functions, Orthogonal. 2. Differentiable dynamical systems--Automatic control--Mathematics. 3. Mathematical optimization. I. Kar, S. K. II. Title. QA404.5.M64 2012 515’.55--dc23 2012028470 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com (cid:105) (cid:105) (cid:105) (cid:105) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) Dedication To my wife, Vijaya Lakshmi, my son, Divyamsh & my daughter, Tejaswini B. M. Mohan To my parents, Satya Ranjan & Manjushree, my sister, Sanjeeta, my wife, Swastika & my daughters, Santika & the late Ayushi S. K. Kar (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) Contents List of Abbreviations xi List of Figures xiii Preface xix Acknowledgements xxi About the Authors xxiii 1 Introduction 1 1.1 Optimal Control Problem . . . . . . . . . . . . . . 1 1.2 Historical Perspective . . . . . . . . . . . . . . . . . 3 1.3 Organisation of the Book . . . . . . . . . . . . . . . 8 2 Orthogonal Functions and Their Properties 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Block-Pulse Functions (BPFs) . . . . . . . . . . . 14 2.2.1 Integration of B(t) . . . . . . . . . . . . . . 15 2.2.2 Product of two BPFs . . . . . . . . . . . . 16 v (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) vi 2.2.3 Representation of C(t)f(t) in terms of BPFs 16 2.2.4 Representation of a time-delay vector in BPFs . . . . . . . . . . . . . . . . . . . . . 17 2.2.5 Representation of reverse time function vec- tor in BPFs . . . . . . . . . . . . . . . . . . 18 2.3 Legendre Polynomials (LPs) . . . . . . . . . . . . . 19 2.4 Shifted Legendre Polynomials (SLPs) . . . . . . . . 20 2.4.1 Integration of L(t) . . . . . . . . . . . . . . 22 2.4.2 Product of two SLPs . . . . . . . . . . . . . 23 2.4.3 Representation of C(t)f(t) in terms of SLPs 24 2.4.4 Representation of a time-delay vector func- tion in SLPs . . . . . . . . . . . . . . . . . 25 2.4.5 Derivation of a time-advanced matrix of SLPs . . . . . . . . . . . . . . . . . . . . . 27 2.4.6 Algorithm for evaluating the integral in Eq. (2.75) . . . . . . . . . . . . . . . . . . . 28 2.4.7 Representation of a reverse time function vector in SLPs . . . . . . . . . . . . . . . . 30 2.5 Nonlinear Operational Matrix . . . . . . . . . . . . 30 2.6 Rationale for Choosing BPFs and SLPs . . . . . . . 32 3 State Estimation 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Inherent Filtering Property of OFs . . . . . . . . . 38 3.3 State Estimation . . . . . . . . . . . . . . . . . . . 39 3.3.1 Kronecker product method . . . . . . . . . . 43 3.3.2 Recursive algorithm via BPFs . . . . . . . . 43 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) vii 3.3.3 Recursive algorithm via SLPs . . . . . . . . 44 3.3.4 Modification of the recursive algorithm of Sinha and Qi-Jie . . . . . . . . . . . . . . . 45 3.4 Illustrative Examples . . . . . . . . . . . . . . . . . 47 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 58 4 Linear Optimal Control Systems Incorporating Observers 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Analysis of Linear Optimal Control Systems Incor- porating Observers . . . . . . . . . . . . . . . . . . 68 4.2.1 Kronecker product method . . . . . . . . . 69 4.2.2 Recursive algorithm via BPFs . . . . . . . . 70 4.2.3 Recursive algorithm via SLPs . . . . . . . . 71 4.3 Illustrative Example . . . . . . . . . . . . . . . . . 72 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 77 5 Optimal Control of Systems Described by Integro- Differential Equations 79 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Optimal Control of LTI Systems Described by Integro-Differential Equations . . . . . . . . . . . . 80 5.3 Illustrative Example . . . . . . . . . . . . . . . . . 84 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 86 6 Linear-Quadratic-Gaussian Control 89 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 89 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) viii 6.2 LQG Control Problem . . . . . . . . . . . . . . . . 90 6.3 Unified Approach . . . . . . . . . . . . . . . . . . 93 6.3.1 Illustrative example . . . . . . . . . . . . . . 96 6.4 Recursive Algorithms . . . . . . . . . . . . . . . . . 97 6.4.1 Recursive algorithm via BPFs . . . . . . . . 101 6.4.2 Recursive algorithm via SLPs . . . . . . . . 102 6.4.3 Illustrative example . . . . . . . . . . . . . . 104 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 105 7 Optimal Control of Singular Systems 109 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Recursive Algorithms . . . . . . . . . . . . . . . . . 111 7.2.1 Recursive algorithm via BPFs . . . . . . . . 113 7.2.2 Recursive algorithm via SLPs . . . . . . . . 114 7.3 Unified Approach . . . . . . . . . . . . . . . . . . 115 7.4 Illustrative Examples . . . . . . . . . . . . . . . . . 117 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 121 8 Optimal Control of Time-Delay Systems 125 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 126 8.2 Optimal Control of Multi-Delay Systems . . . . . . 129 8.2.1 Using BPFs . . . . . . . . . . . . . . . . . . 133 8.2.2 Using SLPs . . . . . . . . . . . . . . . . . . 135 8.2.3 Time-invariant systems . . . . . . . . . . . . 137 8.2.4 Delay free systems . . . . . . . . . . . . . . 138 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “K15099” — 2012/8/24 — 10:29 (cid:2) (cid:2) ix 8.2.5 Illustrative examples . . . . . . . . . . . . . 138 8.3 Optimal Control of Delay Systems with Reverse Time Terms . . . . . . . . . . . . . . . . . . . . . . 146 8.3.1 Using BPFs . . . . . . . . . . . . . . . . . . 151 8.3.2 Using SLPs . . . . . . . . . . . . . . . . . . 153 8.3.3 Illustrative example . . . . . . . . . . . . . . 154 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 155 9 Optimal Control of Nonlinear Systems 159 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 159 9.2 Computation of the Optimal Control Law . . . . . 160 9.3 Illustrative Examples . . . . . . . . . . . . . . . . 162 9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 166 10 Hierarchical Control of Linear Systems 169 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 169 10.2 HierarchicalControlofLTISystemswithQuadratic Cost Functions . . . . . . . . . . . . . . . . . . . . 170 10.2.1 Partial feedback control . . . . . . . . . . . 172 10.2.2 Interaction prediction approach . . . . . . . 173 10.3 Solution of Hierarchical Control Problem via BPFs 174 10.3.1 State transition matrix . . . . . . . . . . . 175 10.3.2 Riccati matrix and open-loop compensation vector . . . . . . . . . . . . . . . . . . . . . 177 10.3.3 State vector . . . . . . . . . . . . . . . . . . 178 10.3.4 Adjoint vector and local control . . . . . . . 180 (cid:2) (cid:2) (cid:2) (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.