Table Of Content(cid:105) (cid:105)
“K15099” — 2012/8/24 — 9:23
(cid:105) (cid:105)
Continuous Time
Dynamical Systems
State Estimation and Optimal Control
with Orthogonal Functions
B. M. Mohan
S. K. Kar
Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an informa business
(cid:105) (cid:105)
(cid:105) (cid:105)
(cid:105) (cid:105)
“K15099” — 2012/8/24 — 9:23
(cid:105) (cid:105)
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
Version Date: 20120822
International Standard Book Number: 978-1-4665-1729-5 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.
Library of Congress Cataloging‑in‑Publication Data
Mohan, B. M. (Bosukonda Murali)
Continuous time dynamical systems : state estimation and optimal control with
orthogonal functions / B.M. Mohan, S.K. Kar.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4665-1729-5 (hardback)
1. Functions, Orthogonal. 2. Differentiable dynamical systems--Automatic
control--Mathematics. 3. Mathematical optimization. I. Kar, S. K. II. Title.
QA404.5.M64 2012
515’.55--dc23 2012028470
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
(cid:105) (cid:105)
(cid:105) (cid:105)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
Dedication
To my wife, Vijaya Lakshmi,
my son, Divyamsh &
my daughter, Tejaswini
B. M. Mohan
To my parents, Satya Ranjan & Manjushree,
my sister, Sanjeeta,
my wife, Swastika &
my daughters, Santika & the late Ayushi
S. K. Kar
(cid:2) (cid:2)
(cid:2) (cid:2)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
Contents
List of Abbreviations xi
List of Figures xiii
Preface xix
Acknowledgements xxi
About the Authors xxiii
1 Introduction 1
1.1 Optimal Control Problem . . . . . . . . . . . . . . 1
1.2 Historical Perspective . . . . . . . . . . . . . . . . . 3
1.3 Organisation of the Book . . . . . . . . . . . . . . . 8
2 Orthogonal Functions and Their Properties 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Block-Pulse Functions (BPFs) . . . . . . . . . . . 14
2.2.1 Integration of B(t) . . . . . . . . . . . . . . 15
2.2.2 Product of two BPFs . . . . . . . . . . . . 16
v
(cid:2) (cid:2)
(cid:2)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
vi
2.2.3 Representation of C(t)f(t) in terms of BPFs 16
2.2.4 Representation of a time-delay vector in
BPFs . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Representation of reverse time function vec-
tor in BPFs . . . . . . . . . . . . . . . . . . 18
2.3 Legendre Polynomials (LPs) . . . . . . . . . . . . . 19
2.4 Shifted Legendre Polynomials (SLPs) . . . . . . . . 20
2.4.1 Integration of L(t) . . . . . . . . . . . . . . 22
2.4.2 Product of two SLPs . . . . . . . . . . . . . 23
2.4.3 Representation of C(t)f(t) in terms of SLPs 24
2.4.4 Representation of a time-delay vector func-
tion in SLPs . . . . . . . . . . . . . . . . . 25
2.4.5 Derivation of a time-advanced matrix of
SLPs . . . . . . . . . . . . . . . . . . . . . 27
2.4.6 Algorithm for evaluating the integral in
Eq. (2.75) . . . . . . . . . . . . . . . . . . . 28
2.4.7 Representation of a reverse time function
vector in SLPs . . . . . . . . . . . . . . . . 30
2.5 Nonlinear Operational Matrix . . . . . . . . . . . . 30
2.6 Rationale for Choosing BPFs and SLPs . . . . . . . 32
3 State Estimation 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Inherent Filtering Property of OFs . . . . . . . . . 38
3.3 State Estimation . . . . . . . . . . . . . . . . . . . 39
3.3.1 Kronecker product method . . . . . . . . . . 43
3.3.2 Recursive algorithm via BPFs . . . . . . . . 43
(cid:2) (cid:2)
(cid:2) (cid:2)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
vii
3.3.3 Recursive algorithm via SLPs . . . . . . . . 44
3.3.4 Modification of the recursive algorithm of
Sinha and Qi-Jie . . . . . . . . . . . . . . . 45
3.4 Illustrative Examples . . . . . . . . . . . . . . . . . 47
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 58
4 Linear Optimal Control Systems Incorporating
Observers 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Analysis of Linear Optimal Control Systems Incor-
porating Observers . . . . . . . . . . . . . . . . . . 68
4.2.1 Kronecker product method . . . . . . . . . 69
4.2.2 Recursive algorithm via BPFs . . . . . . . . 70
4.2.3 Recursive algorithm via SLPs . . . . . . . . 71
4.3 Illustrative Example . . . . . . . . . . . . . . . . . 72
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 77
5 Optimal Control of Systems Described by Integro-
Differential Equations 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Optimal Control of LTI Systems Described by
Integro-Differential Equations . . . . . . . . . . . . 80
5.3 Illustrative Example . . . . . . . . . . . . . . . . . 84
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 86
6 Linear-Quadratic-Gaussian Control 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 89
(cid:2) (cid:2)
(cid:2) (cid:2)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
viii
6.2 LQG Control Problem . . . . . . . . . . . . . . . . 90
6.3 Unified Approach . . . . . . . . . . . . . . . . . . 93
6.3.1 Illustrative example . . . . . . . . . . . . . . 96
6.4 Recursive Algorithms . . . . . . . . . . . . . . . . . 97
6.4.1 Recursive algorithm via BPFs . . . . . . . . 101
6.4.2 Recursive algorithm via SLPs . . . . . . . . 102
6.4.3 Illustrative example . . . . . . . . . . . . . . 104
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 105
7 Optimal Control of Singular Systems 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Recursive Algorithms . . . . . . . . . . . . . . . . . 111
7.2.1 Recursive algorithm via BPFs . . . . . . . . 113
7.2.2 Recursive algorithm via SLPs . . . . . . . . 114
7.3 Unified Approach . . . . . . . . . . . . . . . . . . 115
7.4 Illustrative Examples . . . . . . . . . . . . . . . . . 117
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 121
8 Optimal Control of Time-Delay Systems 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Optimal Control of Multi-Delay Systems . . . . . . 129
8.2.1 Using BPFs . . . . . . . . . . . . . . . . . . 133
8.2.2 Using SLPs . . . . . . . . . . . . . . . . . . 135
8.2.3 Time-invariant systems . . . . . . . . . . . . 137
8.2.4 Delay free systems . . . . . . . . . . . . . . 138
(cid:2) (cid:2)
(cid:2) (cid:2)
(cid:2) (cid:2)
“K15099” — 2012/8/24 — 10:29
(cid:2) (cid:2)
ix
8.2.5 Illustrative examples . . . . . . . . . . . . . 138
8.3 Optimal Control of Delay Systems with Reverse
Time Terms . . . . . . . . . . . . . . . . . . . . . . 146
8.3.1 Using BPFs . . . . . . . . . . . . . . . . . . 151
8.3.2 Using SLPs . . . . . . . . . . . . . . . . . . 153
8.3.3 Illustrative example . . . . . . . . . . . . . . 154
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 155
9 Optimal Control of Nonlinear Systems 159
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 159
9.2 Computation of the Optimal Control Law . . . . . 160
9.3 Illustrative Examples . . . . . . . . . . . . . . . . 162
9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 166
10 Hierarchical Control of Linear Systems 169
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 169
10.2 HierarchicalControlofLTISystemswithQuadratic
Cost Functions . . . . . . . . . . . . . . . . . . . . 170
10.2.1 Partial feedback control . . . . . . . . . . . 172
10.2.2 Interaction prediction approach . . . . . . . 173
10.3 Solution of Hierarchical Control Problem via BPFs 174
10.3.1 State transition matrix . . . . . . . . . . . 175
10.3.2 Riccati matrix and open-loop compensation
vector . . . . . . . . . . . . . . . . . . . . . 177
10.3.3 State vector . . . . . . . . . . . . . . . . . . 178
10.3.4 Adjoint vector and local control . . . . . . . 180
(cid:2) (cid:2)
(cid:2) (cid:2)