ebook img

Continuous selections of multivalued mappings PDF

331 Pages·1997·1.503 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuous selections of multivalued mappings

Contents р. 1из 4 Contents Preface A. Theory 0. Preliminaries 1. Topological spaces 2. Topological vector spaces 3. Banach spaces 4. Extensions of continuous functions 5. Multivalued mappings 1. Convex-valued selection theorem 1. Paracompactness of the domain as a necessary condition 2. The method of outside approximations 3. The method of inside approximations 4. Properties of paracompact spaces 5. Nerves of locally finite coverings 6. Some properties of paracompact spaces 2. Zero-demensional selection theorem 1. Zero-dimensionality of the domain as a necessary condition 2. Proof of Zero-dimensional selection theorem 3. Relations between Zero-dimensional and Convex-valued selection theorems 1. Preliminaries. Probabilistic measure and integration 2. Milyutin mappings. Convex-valued selection theorem via Zero-dimensional theorem 3. Existence of Milyutin mappings on the class of paracompact spaces 4. Zero-dimensionality of X and continuity of f 0 4. Compact-valued selection theorem 1. Approach via Zero-dimensional theorem 2. Proof via inside approximations 3. Method of coverings 5. Finite-dimensional selection theorem n n 1. C and LC subsets of topological spaces 2. Shift selection theorem. Sketch of the proof 3. Proofs of main lemmas and Controlled contractibility theorem 4. From Nerve-weak shift selection theorem to Shift selection theorem 5. From Controlled extension theorem to Nerve-weak shift selection theorem Contents . 2из 4 6. Controlled extension theorem 7. Finite-dimensional selection theorem. Uniform relative version n n 8. From UELC restrictions to ELC restrictions 6. Examples and counterexamples 7. Addendum New proof of Finite-dimensional selection theorem 1. Filtered multivalued mappings. Statements of the results 2. Singlevalued approximations of upper semicontinuous mappings 3. Separations of multivalued mappings. Proof of Theorem (17.6) 4. Enlargements of compact-valued mappings. Proof of Theorem (17.7) B. Results 1. Characterization of normality-type properties 1. Some other convex-valued selection theorems 2. Characterizations via compact-valued selection theorems 3. Dense families of selections. Characterization of perfect normality n 4. Selections of nonclosed-valued equi-LC mappings 2. Unified selection theorems 1. Union of Finite-dimensional and Convex-valued theorems. Approxi-mative selection properties 2. Countable type selection theorems and their unions with other selection theorems 3. Selection theorems for non-lower semicontinuous mappings 1. Lower semicontinuous selections and derived mappings 2. Almost lower semicontinuity 3. Quasi lower semicontinuity 4. Further generalizations of lower semicontinuity 5. Examples 4. Selection theorems for nonconvex-valued maps 1. Paraconvexity. Function of non-convexity of closed subsets of normed spac 2. Axiomatic definition of convex structures in metric spaces. Geodesic structures 3. Topological convex structure 4. Decomposable subsets of spaces of measurable functions 5. Miscellaneous results 1. Metrizability of the range of a multivalued mapping 2. A weakening of the metrizability of the ranges Contents р. 3из 4 3. Hyperspaces, selections and orderability 4. Densely defined selections 5. Continuous multivalued approximations of semicontinuous multival-ued mappings 6. Various results on selections 7. Recent results 6. Measurable selections 1. Uniformization problem 2. Measurable multivalued mappings 3. Measurable selections of semicontinuous mappings 4. Caratheodory conditions. Solutions of differential inclusions C. Applications 1. First applications 1. Extension theorems 2. Bartle-Graves type theorems. Theory of liftings 3. Homeomorphism problem for separable Banach spaces 4. Applications of Zero-dimensional selection theorem 5. Continuous choice in continuity type definitions 6. Paracompactness of CW-complexes 7. Miscellaneous results 2. Regular mappings and locally trivial fibrations 1. Dyer-Hamstrom theorem 2. Regular mappings with fibers homeomorphic to the interval 3. Strongly regular mappings 4. Noncompact fibers. Exact Milyutin mappings 3. Fixed-point theorems 1. Fixed-point theorems and fixed-point sets for convex-valued mappings 2. Fixed-point sets of nonconvex valued mappings 3. Hilbert space case 4. An application of selections in the finite-dimensional case 5. Fixed-point theorem for decomposable-valued contractions 4. Homeomorphism Group Problem 1. Statement of the problem. Solution for n = 1 2. The space of all self-homeomorphisms of the disk 5. Soft mappings 1. Dugundji spaces and AE(0)-compacta 2. Dugundji mappings and 0-soft mappings 3. General concept of softness. Adequacy problem 4. Parametric versions of Vietoris-Wazewski-Wojdyslawski theorem 5. Functor of probabilistic measures 6. Metric projections 1. Proximinal and Čebyšev subsets of normed spaces Contents р. 4из 4 2. Continuity of metric projections and projections 3. Continuous selections of metric projections in spaces of continuous function and L -spaces p 4. Rational approximations in spaces of continuous functions and and L -spac p 7. Differential inclusions 1. Decomposable sets in functional spaces 2. Selection approach to differential inclusions. Preliminary results 3. Selection theorems for decomposable valued mappings 4. Directionally continuous selections References Subject Index (cid:2) Preface This book is dedicated to the theory of continuous selections of multi(cid:8) valued mappings(cid:18) a classical area of mathematics (cid:15)as far as the formulation of its fundamentalproblemsand methodsof solutions are concerned(cid:16) as well as an area which has been intensively developing in recent decades and has found various applications in general topology(cid:18) theory of absolute retracts and in(cid:13)nite(cid:8)dimensional manifolds(cid:18) geometric topology(cid:18) (cid:13)xed(cid:8)point theory(cid:18) functional and convex analysis(cid:18) game theory(cid:18) mathematical economics(cid:18) and other branches of modernmathematics(cid:3) The fundamentalresults in this the(cid:8) ory were laid down in the mid (cid:0)(cid:9)(cid:1)(cid:2)(cid:19)s by E(cid:3) Michael(cid:3) The book consists of (cid:15)relatively independent(cid:16) three parts (cid:20) Part A(cid:12) Theory(cid:18) Part B(cid:12) Results(cid:18) and Part C(cid:12) Applications(cid:3) (cid:15)We shall refer to these parts simply by their names(cid:16)(cid:3) The target audience for the (cid:13)rst part are studentsofmathematics(cid:15)intheirsenioryear orintheir(cid:13)rstyear ofgraduate school(cid:16) who wish to get familiar with the foundations of this theory(cid:3) The goal of the second part is to give a comprehensive survey of the existing results on continuous selections of multivalued mappings(cid:3) It is intended for specialists in this area as well as for those who have masteredthe materialof the (cid:13)rst part of the book(cid:3) In the third part we present important examples of applications of continuous selections(cid:3) We have chosen examples which are su(cid:21)ciently interesting and have played in some sense key role in the corresponding areas of mathematics(cid:3) The necessary prerequisites can all be foundin the(cid:13)rst part(cid:3) It is intendedforresearchers ingeneral andgeometric topology(cid:18) functional and convex analysis(cid:18) approximation theory and (cid:13)xed(cid:8) (cid:8)point theory(cid:18) di(cid:17)erential inclusions(cid:18) and mathematical economics(cid:3) The style of exposition changes as we pass from one part of the book to another(cid:3) Proofs in Theory are given in details(cid:3) Here(cid:18) our philosophy was to present (cid:22)the minimumof facts with the maximumof proofs(cid:23)(cid:3) In Results(cid:18) however(cid:18) proofs are(cid:18) as a rule(cid:18) omitted or are only sketched(cid:3) In other words(cid:18) as it is usual for advanced expositions(cid:18) we give here (cid:22)the maximumof facts with the minimum of proofs(cid:23)(cid:3) Finally(cid:18) in every paragraph of Applications the part concerning selections is studied in details whereas the rests of the argument is usually only sketched(cid:3) So the style is of mixed type(cid:3) Next(cid:18) we wish to explain the methodical approach in Theory(cid:3) We have presented the proofs in some (cid:13)xed structurized form(cid:3) More precisely(cid:18) every theoremisprovedintwosteps(cid:24) PartI(cid:12)ConstructionandPartII(cid:12)Veri(cid:0)cation(cid:3) The (cid:13)rst part lists all steps of the proof and in the sequel we formulate the necessary properties of the construction(cid:3) The second part brings a detailed (cid:0) (cid:5) veri(cid:13)cation of each of the statements of the (cid:13)rst part(cid:3) In this way(cid:18) an experienced reader can only browse through the (cid:13)rst part and then skip the second part altogether(cid:18) whereas a beginner may well wish to pause after Construction andtry to verify all steps by himself(cid:3) Inthis way(cid:18) Construction part can also be regarded as a set of exercises on selection theory(cid:3) Consequently(cid:18) there are no special exercise sections in Theory after each paragraph(cid:12) instead(cid:18) we have organized each proof as a sequence of exercises(cid:3) WehavealsoprovidedTheorywithaseparateintroduction(cid:18)whereweexplain thewaysinwhichmultivaluedmappingsandtheircontinuousselections arise in di(cid:17)erent areas of mathematics(cid:3) Some comments concerning terminology and notations(cid:12) A multivalued mappingtoaspaceY canbede(cid:13)nedasasinglevaluedmappingintoasuitable spaceofsubsetsofY(cid:3) Suchapproachforcesusto introduceaspecialnotation for speci(cid:13)c classes of subsets of Y(cid:3) In the following table we have collected various notations which one can (cid:13)nd in the literature(cid:12) Classes of subsets of Y Notations Y all subsets A(cid:11)Y(cid:12)(cid:0) (cid:5) (cid:0) P(cid:11)Y(cid:12)(cid:0) B(cid:11)Y(cid:12) Y all nonempty subsets (cid:5) (cid:0) expY(cid:0) N(cid:11)Y(cid:12) closed expY(cid:0) F(cid:11)Y(cid:12)(cid:0) Cl(cid:11)Y(cid:12)(cid:0) C(cid:11)Y(cid:12) compact Cp(cid:11)Y(cid:12)(cid:0) C(cid:11)Y(cid:12)(cid:0) K(cid:11)Y(cid:12)(cid:0) Comp(cid:11)Y(cid:12)(cid:0) C(cid:11)Y(cid:12) (cid:10)nite F(cid:11)Y(cid:12)(cid:0) K(cid:11)Y(cid:12)(cid:0) exp(cid:0)(cid:11)Y(cid:12)(cid:0) J(cid:11)Y(cid:12) convex Cv(cid:11)Y(cid:12)(cid:0) C(cid:11)Y(cid:12)(cid:0) K(cid:11)Y(cid:12)(cid:0) Conv(cid:11)Y(cid:12) closed convex FC(cid:11)Y(cid:12)(cid:0)CC(cid:11)Y(cid:12)(cid:0) CC(cid:11)Y(cid:12)(cid:0) CK(cid:11)Y (cid:12) compact convex Kv(cid:11)Y(cid:12)(cid:0) CK(cid:11)Y(cid:12)(cid:0) ComC(cid:11)Y(cid:12)(cid:0) Uk(cid:11)Y(cid:12)(cid:0) conv(cid:18)(cid:11)Y(cid:12) complete CMP(cid:11)Y(cid:12)(cid:0) (cid:19)(cid:11)Y(cid:12) bounded B(cid:11)Y(cid:12)(cid:0) Bd(cid:11)Y(cid:12) combination of above BdF(cid:11)Y(cid:12)(cid:0) (cid:19)K(cid:11)Y(cid:12)(cid:0) (cid:19)CK(cid:11)Y(cid:12)(cid:0)(cid:1)(cid:1)(cid:1) We have solved the problem of the choice of notations in a very simple way(cid:12) we did not make any choice(cid:3) More precisely(cid:18) we prefer the language instead of abbreviations andwe always (cid:15)except insomeplaces inResults(cid:16) use phrases of the type (cid:22)let F (cid:12) X Y be a multivalued mapping with closed (cid:0) (cid:15)compact(cid:18) bounded(cid:18) etc(cid:3)(cid:16) values(cid:3)(cid:3)(cid:3)(cid:23)(cid:3) The only general agreement is that all values of any multivalued mapping F (cid:12) X Y are nonempty subsets of Y(cid:2) (cid:0) According to our decision(cid:18) we systematically use the notation (cid:22)F (cid:12)X (cid:0) Y(cid:23) and associate with it the term (cid:22)multivalued mapping(cid:23)(cid:18) although from purely pedagogical point of view the last term should be related to notions Y of the type (cid:22)F (cid:12) X (cid:4) (cid:18) F (cid:12) X C(cid:15)Y(cid:16)(cid:18) etc(cid:3)(cid:23) Finally(cid:18) a word about (cid:0) (cid:0) F cross(cid:8)references in our book(cid:12) when we are e(cid:3)g(cid:3) in Part B(cid:12) Results and refer to say(cid:18) Theorem (cid:15)A(cid:3)(cid:5)(cid:3)(cid:9)(cid:16) (cid:15)resp(cid:3) De(cid:13)nition (cid:15)C(cid:3)(cid:6)(cid:3)(cid:0)(cid:16)(cid:16)(cid:18) we mean Theorem (cid:15)(cid:5)(cid:3)(cid:9)(cid:16) of Part A(cid:12) Theory (cid:15)resp(cid:3) De(cid:13)nition (cid:15)(cid:6)(cid:3)(cid:0)(cid:16) of Part C(cid:12) Applications(cid:16)(cid:3) (cid:1) (cid:17) Weconcludebysomecommentsconcerningtheexistingliterature(cid:3) There already are some textbooks and monographs where some attention is also given to certain aspects of the theory of selections (cid:25)(cid:0)(cid:10)(cid:18)(cid:0)(cid:6)(cid:18)(cid:4)(cid:1)(cid:18)(cid:5)(cid:2)(cid:18)(cid:0)(cid:5)(cid:0)(cid:18)(cid:4)(cid:11)(cid:2)(cid:18)(cid:4)(cid:9)(cid:11)(cid:18) (cid:5)(cid:4)(cid:10)(cid:18)(cid:7)(cid:2)(cid:1)(cid:26)(cid:3) However(cid:18) none of them contains a systematic treatment of the theory and so to the best of our knowledge(cid:18) the present monograph is the (cid:13)rst one which is devoted exclusively to this subject(cid:3) Preliminary versions of the book were read by several of our col(cid:8) leagues(cid:3) In particular(cid:18) we acknowledge remarks by S(cid:3) M(cid:3) Ageev(cid:18) V(cid:3) Gutev(cid:18) S(cid:3) V(cid:3) Konyagin(cid:18) V(cid:3) I(cid:3) Levin(cid:18) and E(cid:3) Michael(cid:3) The manuscript was prepared using TEX by M(cid:3) Zemlji(cid:27)c and we are very grateful for his technical help and assistance throughalltheseyears(cid:3) The(cid:13)rstauthoracknowledges thesupport ofthe MinistryforScience andTechnology of theRepublicofSlovenia grants No(cid:3)P(cid:0)(cid:8)(cid:2)(cid:4)(cid:0)(cid:7)(cid:8)(cid:0)(cid:2)(cid:0)(cid:8)(cid:9)(cid:4) andNo(cid:3)J(cid:0)(cid:8)(cid:6)(cid:2)(cid:5)(cid:9)(cid:8)(cid:2)(cid:0)(cid:2)(cid:0)(cid:8)(cid:9)(cid:1)(cid:18) andthesecondauthorthesup(cid:8) portof theInternationalScienceG(cid:3)SorosFoundationgrantNo(cid:3)NFU(cid:2)(cid:2)(cid:2) and the Russian Basic Research Foundation grant No(cid:3) (cid:9)(cid:10)(cid:8)(cid:2)(cid:0)(cid:8)(cid:2)(cid:0)(cid:0)(cid:10)(cid:10)a(cid:3) D(cid:2) Repov(cid:16)s and P(cid:2) V(cid:2) Semenov (cid:2) x(cid:2)(cid:1) CONVEX(cid:3)VALUED SELECTION THEOREM This chapter deals more or less with a single theorem (cid:20) the one stated in the title(cid:3) This theorem gives su(cid:22)cient conditions for the solvability of the continuous selection problem for a paracompact domain(cid:3) But in order to introduce paracompactness from a selection point of view we start by searching for the necessary condition for the existence of such a solution(cid:3) In Section (cid:0) we prove that the existence of continuous selections of lower semicontinuous mappings with closed convex values implies the existence of locally (cid:13)nite re(cid:13)nements and locally (cid:13)nite partitions of unity(cid:3) In Sections (cid:4) and (cid:5) we present two approaches to proving the Convex(cid:8)valued selection theorem(cid:3) In Section (cid:4) the answer is given as a uniform limit of continuous (cid:1)n(cid:8)selections(cid:18)whereasinSection(cid:5)(cid:18)itisgivenasauniformlimitof(cid:1)n(cid:8)continu(cid:8) ousselections(cid:3) In(cid:15)auxiliary(cid:16)Section(cid:7)we provetheequivalence ofde(cid:13)nitions of paracompact spaces via coverings and via partitions of unity(cid:3) Also(cid:18) we collect there the material concerning the properties of paracompact spaces(cid:18) nerves of coverings and some facts about dimension theory(cid:3) All material of this chapter is classical and well(cid:8)known(cid:3) In the proof of Theorem (cid:15)(cid:0)(cid:3)(cid:0)(cid:16) we follow (cid:25)(cid:5)(cid:2)(cid:26)(cid:18) with a supplement as in (cid:15)(cid:0)(cid:3)(cid:0)(cid:16)$(cid:3) Proof of Theorem(cid:15)(cid:0)(cid:3)(cid:1)(cid:16)(cid:18) given in Section (cid:4)(cid:18) (cid:13)rst appeared in (cid:25)(cid:4)(cid:1)(cid:6)(cid:18)(cid:4)(cid:1)(cid:11)(cid:26)(cid:3) This approach was repeated in several textbooks and monographs(cid:3) On the other hand(cid:18) the second proof of Theorem (cid:15)(cid:0)(cid:3)(cid:1)(cid:16)(cid:18) given in Section (cid:5)(cid:18) is practically unknown(cid:3) We know of only one article (cid:25)(cid:4)(cid:10)(cid:0)(cid:26) where such an idea was realized(cid:18) however(cid:18) inamuchmoreabstract situation(cid:3) So(cid:18) perhapsthisproofofTheorem(cid:15)(cid:0)(cid:3)(cid:1)(cid:16) is new(cid:3) We omitall references in Section (cid:7)(cid:3) They can befoundin any standard book on general topology(cid:18) e(cid:3)g(cid:3) in (cid:25)(cid:0)(cid:2)(cid:11)(cid:18)(cid:0)(cid:0)(cid:11)(cid:26)(cid:3) (cid:0)(cid:1) Paracompactness of the domain as a necessary condition Theorem (cid:2)(cid:4)(cid:0)(cid:4)(cid:5)(cid:3) Let X be a topological space such that each lower semi(cid:1) continuous map from X into any Banach space with closed convex values admits a continuous singlevalued selection(cid:2) Then every open covering of X admits a locally (cid:0)nite open re(cid:0)nement(cid:2) Proof(cid:2) I(cid:2) Construction Let(cid:12) (cid:15)(cid:0)(cid:16) (cid:2) (cid:14) G(cid:1) (cid:1)(cid:0)A be an open covering of the space X(cid:24) f g (cid:15)(cid:4)(cid:16) B (cid:14) l(cid:2)(cid:15)A(cid:16) be the Banach space of all summable functions s (cid:12) A IR (cid:0) over the index set A (cid:15)see (cid:2)(cid:3)(cid:5)(cid:16)(cid:24) and x (cid:15)(cid:5)(cid:16) For every x X(cid:18) let (cid:2) F(cid:15)x(cid:16) (cid:14) s B s (cid:2)(cid:3) s (cid:14) (cid:0) and s(cid:15)(cid:5)(cid:16) (cid:14)(cid:2)(cid:3) whenever x (cid:6) G(cid:1) (cid:0) f (cid:2) j (cid:12) k k (cid:2) g (cid:2)(cid:2) (cid:17)(cid:14) Convex(cid:1)valued selection theorem We claim that then(cid:12) (cid:15)a(cid:16) F(cid:15)x(cid:16) is a nonempty convex closed subset of the Banach space B(cid:18) for every x X(cid:24) and (cid:2) (cid:15)b(cid:16) The mapF (cid:12) X B is lower semicontinuous(cid:18) i(cid:3)e(cid:3) for every x X(cid:18) every (cid:0) (cid:2)(cid:2) (cid:2) s F(cid:15)x(cid:16) and every (cid:1) (cid:9) (cid:2)(cid:18) the preimage F (cid:15)D(cid:15)s(cid:3)(cid:1)(cid:16)(cid:16) contains an open (cid:2) neighborhood of x(cid:3) Itfollowsbythehypothesesofthetheoremthat thereexistsacontinuous selection for F(cid:18) say f(cid:3) Let(cid:12) (cid:15)(cid:7)(cid:16) e(cid:1)(cid:15)x(cid:16) (cid:14)(cid:25)f(cid:15)x(cid:16)(cid:26)(cid:15)(cid:5)(cid:16)(cid:24) (cid:15)(cid:1)(cid:16) e(cid:15)x(cid:16) (cid:14)sup e(cid:1)(cid:15)x(cid:16) (cid:5) A (cid:24) and f j (cid:2) g (cid:15)(cid:10)(cid:16) V(cid:1) (cid:14) x X e(cid:1)(cid:15)x(cid:16) (cid:9)e(cid:15)x(cid:16)(cid:6)(cid:4) (cid:3) f (cid:2) j g We claim that then(cid:12) (cid:15)c(cid:16) e(cid:1) is a continuous function from X into (cid:25)(cid:2)(cid:3)(cid:0)(cid:26) and (cid:1)(cid:0)Ae(cid:1)(cid:15)x(cid:16) (cid:14) (cid:0)(cid:18) for every x X(cid:24) (cid:2) P (cid:15)d(cid:16) e is a continuous positive function(cid:24) (cid:15)e(cid:16) If e(cid:1)(cid:15)x(cid:16) (cid:9)(cid:2) then x G(cid:1)(cid:18) for all (cid:5) A(cid:24) (cid:2) (cid:2) (cid:15)f(cid:16) V(cid:1) G(cid:1)(cid:18) for all (cid:5) A(cid:24) (cid:5) (cid:2) (cid:15)g(cid:16) V(cid:1) is a locally (cid:13)nite family of open subsets of the space X(cid:24) and f g (cid:15)h(cid:16) The family V(cid:1) (cid:1)(cid:0)A(cid:18) is a cover of the space X(cid:3) f g II(cid:2) Veri(cid:0)cation (cid:15)a(cid:16) Let A(cid:15)x(cid:16) (cid:14) (cid:5) A x G(cid:1) (cid:3) It is easy to see that F(cid:15)x(cid:16) is the standard f (cid:2) j (cid:2) g basic simplex in the Banach space l(cid:2)(cid:15)A(cid:15)x(cid:16)(cid:16)(cid:18) see (cid:2)(cid:3)(cid:5)(cid:3) x (cid:15)b(cid:16) For x X(cid:18) s F(cid:15)x(cid:16) and (cid:1) (cid:9) (cid:2)(cid:18) let us (cid:13)rst consider the case when (cid:2) (cid:2) supp(cid:15)s(cid:16) (cid:14) (cid:5) A s(cid:15)(cid:5)(cid:16) (cid:9) (cid:2) (cid:14) (cid:5)(cid:2)(cid:3)(cid:5)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:5)N is a (cid:0)nite subset of A(cid:3) f (cid:2) j g f g (cid:1) Thendueto theconstructionofthemappingF(cid:18)thepointsbelongsto F(cid:15)x(cid:16)(cid:18) (cid:1) for every x from the neighborhood G(cid:15)x(cid:16) (cid:14) i(cid:8)N G(cid:1)i of the point x(cid:3) Hence (cid:2)(cid:2) (cid:2)(cid:2) G(cid:15)x(cid:16) F (cid:15) s (cid:16) F (cid:15)D(cid:15)s(cid:3)(cid:1)(cid:16)(cid:16)(cid:18) i(cid:3)e(cid:3) F is lower semicontinuous at x(cid:3) The (cid:5) f g (cid:5) T second case of countable supp(cid:15)s(cid:16) follows from the (cid:13)rst case and from the obvious fact that in the standard simplexof the space (cid:14)(cid:2) the subset of points with (cid:13)nite supports constitutes a dense subset(cid:3) (cid:15)c(cid:16) The function e(cid:1) (cid:12)X (cid:25)(cid:2)(cid:3)(cid:0)(cid:26) is a composition of the continuous selection (cid:0) f and the (cid:22)(cid:5)(cid:8)th coordinate(cid:23) projection p(cid:1) of the entire Banach space l(cid:2)(cid:15)A(cid:16)(cid:3) The equality (cid:1)(cid:0)Ae(cid:1)(cid:15)x(cid:16) (cid:14)(cid:0) follows by (cid:15)(cid:7)(cid:16) and since f(cid:15)x(cid:16) F(cid:15)x(cid:16)(cid:3) (cid:2) (cid:15)d(cid:16) For an arbitrary x X(cid:18) we pick an index (cid:12) (cid:14)(cid:12)(cid:15)x(cid:16) such that e(cid:6)(cid:15)x(cid:16) (cid:9)(cid:2)(cid:3) P (cid:2) Then for some (cid:13)nite set of indices (cid:30)(cid:15)x(cid:16) A we have that (cid:5) (cid:0) e(cid:1)(cid:15)x(cid:16) (cid:8) e(cid:6)(cid:15)x(cid:16)(cid:6)(cid:4)(cid:0) (cid:16) (cid:1)(cid:0)(cid:1)(cid:8)x(cid:9) X Onthe left side isthe sumof a (cid:13)nite numberof continuous functions(cid:3) Hence(cid:18) the inequality e(cid:1)(cid:15)z(cid:16) (cid:14)(cid:0) e(cid:1)(cid:15)z(cid:16) (cid:8)e(cid:6)(cid:15)z(cid:16)(cid:6)(cid:4) (cid:16) (cid:1)(cid:0)(cid:4)(cid:1)(cid:8)x(cid:9) (cid:1)(cid:0)(cid:1)(cid:8)x(cid:9) X X (cid:2)(cid:3) Paracompactness of the domain as a necessary condition (cid:17)(cid:13) holds for every z from some open neighborhood W(cid:15)x(cid:16) of the point x(cid:3) But then e(cid:0)(cid:15)z(cid:16) (cid:8) e(cid:6)(cid:15)z(cid:16)(cid:18) for all (cid:2) (cid:6) (cid:30)(cid:15)x(cid:16)(cid:3) So we have proved that the function (cid:2) e(cid:15)(cid:16) is in fact the maximumof a (cid:13)nite numberof continuous functions in the (cid:14) neighborhood W(cid:15)x(cid:16)(cid:3) Therefore e(cid:15) (cid:16) is continuous(cid:3) Finally(cid:18) positivity of e(cid:15) (cid:16) (cid:14) (cid:14) follows from (cid:15)c(cid:16)(cid:3) (cid:15)e(cid:16) If x (cid:6) G(cid:1) then for every s F(cid:15)x(cid:16)(cid:18) we have that s(cid:15)(cid:5)(cid:16) (cid:14) (cid:2)(cid:18) (cid:15)see (cid:15)(cid:5)(cid:16)(cid:16)(cid:3) So (cid:2) (cid:2) by f(cid:15)x(cid:16) F(cid:15)x(cid:16)(cid:18) we get e(cid:1)(cid:15)x(cid:16) (cid:14)(cid:25)f(cid:15)x(cid:16)(cid:26)(cid:15)(cid:5)(cid:16) (cid:14)(cid:2)(cid:3) (cid:2) (cid:15)f(cid:16) This follows frome(cid:1)(cid:15)x(cid:16) (cid:9)e(cid:15)x(cid:16)(cid:6)(cid:4) e(cid:6)(cid:15)x(cid:16)(cid:6)(cid:4)(cid:18) from(cid:15)e(cid:16)(cid:18) and frome(cid:6)(cid:15)x(cid:16) (cid:9) (cid:12) (cid:9)(cid:2) (cid:15)see the proof of (cid:15)d(cid:16)(cid:16)(cid:3) (cid:15)g(cid:16) It follows by (cid:15)(cid:10)(cid:16) and by continuity of functions e(cid:1) and e that V(cid:1) is an open set(cid:3) As in the proof of (cid:15)d(cid:16) we (cid:13)nd for an arbitrary x(cid:18) some (cid:13)nite set (cid:30)(cid:15)x(cid:16) A and someneighborhoodW(cid:15)x(cid:16) of the point x(cid:3) Then W(cid:15)x(cid:16) V(cid:0) (cid:14) (cid:5) (cid:3) (cid:13) (cid:1) holds only for (cid:2) (cid:30)(cid:15)x(cid:16)(cid:3) Indeed(cid:18) if z V(cid:0) W(cid:15)x(cid:16) then (cid:2) (cid:2) (cid:3) e(cid:0)(cid:15)z(cid:16) (cid:9) e(cid:15)z(cid:16)(cid:6)(cid:4) e(cid:6)(cid:15)z(cid:16)(cid:6)(cid:4) (cid:9)(cid:0) e(cid:1)(cid:15)z(cid:16) (cid:14) e(cid:1)(cid:15)z(cid:16)(cid:0) (cid:12) (cid:16) (cid:1)(cid:0)(cid:1)(cid:8)x(cid:9) (cid:1)(cid:0)(cid:4)(cid:1)(cid:8)x(cid:9) X X Hence e(cid:0)(cid:15)z(cid:16) (cid:9)e(cid:1)(cid:15)z(cid:16)(cid:18) for every (cid:5) (cid:6) (cid:30)(cid:15)x(cid:16)(cid:18) i(cid:3)e(cid:3) (cid:2) (cid:30)(cid:15)x(cid:16)(cid:3) (cid:2) (cid:2) (cid:15)h(cid:16) Follows by contradiction(cid:12) if x (cid:6) V(cid:1)(cid:18) (cid:5) A(cid:18) then e(cid:1)(cid:15)x(cid:16) e(cid:15)x(cid:16)(cid:6)(cid:4) and (cid:2) (cid:2) (cid:9) (cid:2) (cid:8)e(cid:15)x(cid:16) (cid:14) supp e(cid:1)(cid:15)x(cid:16) (cid:5) A e(cid:15)x(cid:16)(cid:6)(cid:4)(cid:3) f j (cid:2) g (cid:9) S De(cid:1)nition (cid:2)(cid:4)(cid:0)(cid:6)(cid:5)(cid:3) A Hausdor(cid:17) space X is said to be paracompact if every open covering of X admits a locally (cid:13)nite open re(cid:13)nement(cid:3) We can now reformulate Theorem (cid:15)(cid:0)(cid:3)(cid:0)(cid:16) in the following manner(cid:12) Para(cid:1) compactness of the domain is a necessary condition for existence of contin(cid:1) uous selections of lower semicontinuous mappings into Banach spaces with convex closed values(cid:2) Our (cid:13)rst goal is to prove that paracompactness of the domain is also a su(cid:21)cient condition for such an existence (cid:15)Sect (cid:4)(cid:16)(cid:3) But here we continue by ananalogueofTheorem(cid:15)(cid:0)(cid:3)(cid:0)(cid:16) forexistence oflocally(cid:13)nitepartitionsofunity(cid:3) De(cid:1)nition (cid:2)(cid:4)(cid:0)(cid:7)(cid:5)(cid:3) (cid:15)a(cid:16) A family e(cid:1) (cid:1)(cid:0)A of nonnegative continuous functions on a topological f g space X is said to be a locally (cid:0)nite partition of unity if for every x X(cid:18) (cid:2) there exists a neighborhood W(cid:15)x(cid:16) and a (cid:13)nite subset A(cid:15)x(cid:16) A such that (cid:5) (cid:1)(cid:0)A(cid:8)x(cid:9)e(cid:1)(cid:15)y(cid:16) (cid:14) (cid:0)(cid:18) for all y W(cid:15)x(cid:16) and e(cid:1)(cid:15)y(cid:16) (cid:14) (cid:2)(cid:18) for y (cid:6) W(cid:15)x(cid:16) and (cid:2) (cid:2) (cid:5) A(cid:15)x(cid:16)(cid:3) P(cid:2) (cid:15)b(cid:16) A locally (cid:13)nite partition of unity e(cid:1) (cid:1)(cid:0)A is said to be inscribed into an f g opencovering G(cid:0) (cid:0)(cid:0)(cid:1) of atopological space X if forany (cid:5) A(cid:18) there exists f g (cid:2) (cid:2) (cid:30) such that (cid:2) supp(cid:15)e(cid:1)(cid:16) (cid:14) Cl x X e(cid:1)(cid:15)x(cid:16) (cid:9)(cid:2) G(cid:0)(cid:3) f (cid:2) j g (cid:5) It is easy to see that for a locally (cid:13)nite partition of unity e(cid:1) (cid:1)(cid:0)A (cid:2)(cid:2) f g inscribed into a covering G(cid:0) (cid:0)(cid:0)G(cid:18) the family of open sets e(cid:1) (cid:15)(cid:15)(cid:2)(cid:3)(cid:0)(cid:26)(cid:16) (cid:1)(cid:0)A f g f g gives a locally (cid:13)nite re(cid:13)nement of the covering G(cid:0) (cid:0)(cid:0)(cid:1)(cid:3) f g (cid:2)(cid:4)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.