Table Of ContentThis page intentionally left blank
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
FOUNDING EDITOR G.-C. ROTA
EditorialBoard
R.S.Doran,P.Flajolet,M.Ismail,T.-Y.Lam,E.Lutwak
Volume93
ContinuousLatticesandDomains
ENCYCLOPEDIAOFMATHEMATICSANDITSAPPLICATIONS
http://publishing.cambridge.org/stm/mathematics/com
4 W.Miller,Jr.Symmetryandseparationofvariables
6 H.MincPermanents
11 W.B.JonesandW.J.ThronContinuedfractions
12 N.F.G.MartinandJ.W.EnglandMathematicaltheoryofentropy
18 H.O.FattoriniTheCauchyproblem
19 G.G.Lorentz,K.JetterandS.D.RiemenschneiderBirkhoffinterpolation
21 W.T.TutteGraphtheory
22 J.R.BastidaFieldextensionsandGaloistheory
23 J.R.CannonTheonedimensionalheatequation
25 A.SalomaaComputationandautomata
26 N.White(ed.)Theoryofmatroids
27 N.H.Bingham,C.M.GoldieandJ.L.TeugelsRegularvariation
28 P.P.PetrushevandV.A.PopovRationalapproximationofrealfunctions
29 N.White(ed.)Combinatorialgeometrics
30 M.PohstandH.ZassenhausAlgorithmicalgebraicnumbertheory
31 J.AczelandJ.DhombresFunctionalequationscontainingseveralvariables
32 M.Kuczma,B.ChozewskiandR.GerIterativefunctionalequations
33 R.V.AmbartzumianFactorizationcalculusandgeometricprobability
34 G.Gripenberg,S.-O.LondenandO.StaffansVolterraintegralandfunctionalequations
35 G.GasperandM.RahmanBasichypergeometricseries
36 E.TorgersenComparisonofstatisticalexperiments
37 ANeumaierIntervalsmethodsforsystemsofequations
38 N.KorneichukExactconstantsinapproximationtheory
39 R.A.BrualdiandH.J.RyserCombinatorialmatrixtheory
40 N.White(ed.)Matroidapplications
41 S.SakaiOperatoralgebrasindynamicalsystems
42 W.HodgesModeltheory
43 H.StahlandV.TotikGeneralorthogonalpolynomials
44 R.SchneiderConvexbodies
45 G.DaPratoandJ.ZabczykStochasticequationsininfinitedimensions
46 ABjorner,M.LasVergnas,B.Sturmfels,N.WhiteandG.ZieglerOrientedmatroids
47 E.A.EdgarandL.SuchestonStoppingtimesanddirectedprocesses
48 C.SimsComputationwithfinitelypresentedgroups
49 T.PalmerBanachalgebrasandthegeneraltheoryof*-algebras
50 F.BorceuxHandbookofcategoricalalgebraI
51 F.BorceuxHandbookofcategoricalalgebraII
52 F.BorceuxHandbookofcategoricalalgebraIII
54 A.KatokandB.HassleblattIntroductiontothemoderntheoryofdynamicalsystems
55 V.N.SachkovCombinatorialmethodsindiscretemathematics
56 V.N.SachkovProbabilisticmethodsindiscretemathematics
57 P.M.CohnSkewFields
58 RichardJ.GardnerGeometrictomography
59 GeorgeA.Baker,Jr.andPeterGraves-MorrisPade´approximants
60 JanKrajicekBoundedarithmetic,propositionallogic,andcomplextheory
61 H.GromerGeometricapplicationsofFourierseriesandsphericalharmonics
62 H.O.FattoriniInfinitedimensionaloptimizationandcontroltheory
63 A.C.ThompsonMinkowskigeometry
64 R.B.BapatandT.E.S.RaghavanNonnegativematricesandapplications
65 K.EngelSpernertheory
66 D.Cvetkovic,P.RowlinsonandS.SimicEigenspacesofgraphs
67 F.Bergeron,G.LabelleandP.LerouxCombinatorialspeciesandtree-likestructures
68 R.GoodmanandN.WallachRepresentationsoftheclassicalgroups
69 T.Beth,D.JungnickelandH.LenzDesignTheoryvolumeI2ed.
70 APietschandJ.WenzelOrthonormalsystemsandBanachspacegeometry
71 GeorgeE.Andrews,RichardAskeyandRanjanRoySpecialFunctions
72 R.TicciatiQuantumfieldtheoryformathematicians
76 A.A.IvanovGeometryofsporadicgroupsI
78 T.Beth,D.JungnickelandH.LenzDesignTheoryvolumeII2ed.
80 O.StormarkLie’sStructuralApproachtoPDESystems
81 C.F.DunklandY.XuOrthogonalpolynomialsofseveralvariables
82 J.MayberryThefoundationsofmathematicsinthetheoryofsets
83 C.Foias,R.Temam,O.ManleyandR.MartinsdaSilvaRosaNavier-Stokesequationsandturbulence
84 B.PolsterandG.SteinkeGeometriesonSurfaces
85 D.KaminskiandR.B.ParisAsymptoticsandMellin–Barnesintegrals
86 RobertJ.McElieceThetheoryofinformationandcoding,2ed.
87 BruceA.MagurnAnalgebraicintroductiontoK-theory
Continuous Lattices and Domains
G. GIERZ
K. H. HOFMANN
K. KEIMEL
J. D. LAWSON
M. MISLOVE
D. S. SCOTT
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge , United Kingdom
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521803380
© Cambridge University Press 2003
This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.
First published in print format 2003
-
isbn-13 978-0-511-06356-5 eBook (NetLibrary)
-
isbn-10 0-511-06356-3 eBook (NetLibrary)
-
isbn-13 978-0-521-80338-0 hardback
-
isbn-10 0-521-80338-1 hardback
Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents
Preface pagexi
Acknowledgments xxi
ForewordtoACompendiumofContinuousLattices xxiii
IntroductiontoACompendiumofContinuousLattices xxvii
O APrimeronOrderedSetsandLattices 1
O-1 GeneralitiesandNotation 1
Exercises 7
Oldnotes 8
O-2 CompletenessConditionsforLatticesandPosets 8
Exercises 17
Oldnotes 21
Newnotes 22
O-3 GaloisConnections 22
Exercises 31
Oldnotes 35
O-4 MeetContinuousLatticesandSemilattices 36
Exercises 39
Oldnotes 41
O-5 T SpacesandOrder 41
0
Exercises 45
Newnotes 47
I OrderTheoryofDomains 48
I-1 The“Way-below”Relation 49
Theway-belowrelationandcontinuousposets 49
Auxiliaryrelations 57
Importantexamples 62
v
vi Contents
Exercises 71
Oldnotes 75
Newnotes 78
I-2 Products,SubstructuresandQuotients 79
Products,projection,kernelandclosureoperatorson
domains 79
Equationaltheoryofcontinuouslattices 83
Exercises 90
Oldnotes 93
Newnotes 94
I-3 Irreducibleelements 95
Openfiltersandirreducibleelements 95
Distributivityandprimeelements 98
Pseudoprimeelements 106
Exercises 108
Oldnotes 114
I-4 AlgebraicDomainsandLattices 115
Compactelements,algebraicandarithmeticdomains 115
Products,kernelandclosureoperators 119
Completelyirreducibleelements 125
Exercises 127
Oldnotes 129
Newnotes 129
II TheScottTopology 131
II-1 TheScottTopology 132
Scottconvergence 132
TheScotttopologyofdomains 138
TheHofmann–MisloveTheorem 144
Exercises 151
Oldnotes 155
Newnotes 156
II-2 Scott-ContinuousFunctions 157
Scott-continuousfunctions 157
Functionspacesandcartesianclosedcategoriesof
dcpos 161
FS-domainsandbifinitedomains 165
Exercises 171
Oldnotes 176
Newnotes 176
Contents vii
II-3 InjectiveSpaces 176
Injectiveanddenselyinjectivespaces 177
Monotoneconvergencespaces 182
Exercises 185
Oldnotes 187
Newnotes 187
II-4 FunctionSpaces 187
TheIsbelltopology 187
Spaceswithacontinuoustopology 190
OndcposwithacontinuousScotttopology 197
Exercises 204
Oldnotes 206
Newnotes 207
III TheLawsonTopology 208
III-1 TheLawsonTopology 209
Exercises 216
Oldnotes 218
III-2 MeetContinuityRevisited 219
Exercises 224
Oldnotes 225
Newnotes 226
III-3 QuasicontinuityandLiminfConvergence 226
Quasicontinuousdomains 226
TheLawsontopologyandLiminfconvergence 231
Exercises 236
Oldnotes 240
Newnotes 240
III-4 BasesandWeights 240
Exercises 249
Oldnotes 252
Newnotes 252
III-5 CompactDomains 253
Exercises 261
Newnotes 263
IV MorphismsandFunctors 264
IV-1 DualityTheory 266
Exercises 279
Oldnotes 279
viii Contents
IV-2 DualityofDomains 280
Exercises 289
Newnotes 290
IV-3 MorphismsintoChains 290
Exercises 301
Oldnotes 304
IV-4 ProjectiveLimits 305
Exercises 317
Oldnotes 317
IV-5 Pro-continuousandLocallyContinuous
Functors 318
Exercises 329
Oldnotes 330
Newnotes 330
IV-6 Fixed-PointConstructionsforFunctors 330
Exercises 340
Newnotes 342
IV-7 DomainEquationsandRecursiveDataTypes 343
Domainequationsforcovariantfunctors 344
Domainequationsformixedvariancefunctors 351
Examplesofdomainequations 355
Exercises 357
Newnotes 358
IV-8 Powerdomains 359
TheHoarepowerdomain 361
TheSmythpowerdomain 363
ThePlotkinpowerdomain 364
Exercises 372
Newnotes 374
IV-9 TheExtendedProbabilisticPowerdomain 374
Exercises 391
Newnotes 392
V SpectralTheoryofContinuousLattices 394
V-1 TheLemma 395
Exercises 399
Oldnotes 399
V-2 OrderGenerationandTopologicalGeneration 400
Exercises 402
Oldnotes 403