Table Of ContentMathematics Research Developments
No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or
by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no
expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of information
contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.
Mathematics Research Developments
Non-Euclidean Geometry in Materials of Living and Non-Living Matter
in the Space of the Highest Dimension
Gennadiy Zhizhin (Author)
2022. ISBN: 978-1-68507-885-0 (Hardcover)
2022. ISBN: 979-8-88697-064-7 (eBook)
Frontiers in Mathematical Modelling Research
M. Haider Ali Biswas and M. Humayun Kabir (Editors)
2022. ISBN: 978-1-68507-430-2 (Hardcover)
2022. ISBN: 978-1-68507-845-4 (eBook)
Mathematical Modeling of the Learning Curve and
Its Practical Applications
Charles Ira Abramson and Igor Stepanov (Authors)
2022. ISBN: 978-1-68507-737-2 (Hardcover)
2022. ISBN: 978-1-68507-851-5 (eBook)
Partial Differential Equations: Theory, Numerical Methods
and Ill-Posed Problems
Michael V. Klibanov and Jingzhi Li (Authors)
2022. ISBN: 978-1-68507-592-7 (Hardcover)
2022. ISBN: 978-1-68507-727-3 (eBook)
Outliers: Detection and Analysis
Apra Lipi, Kishan Kumar, and Soubhik Chakraborty (Authors)
2022. ISBN: 978-1-68507-554-5 (Softcover)
2022. ISBN: 978-1-68507-587-3 (eBook)
More information about this series can be found at https://novapublishers.com/product-
category/series/mathematics-research-developments/
Christopher I. Argyros, Samundra Regmi,
Ioannis K. Argyros and Santhosh George
Contemporary Algorithms
Theory and Applications
Volume I
Copyright © 2022 by Nova Science Publishers, Inc.
https://doi.org/10.52305/IHML8594
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.
We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions
to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website
and locate the “Get Permission” button below the title description. This button is linked directly to
the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search
by title, ISBN, or ISSN.
For further questions about using the service on copyright.com, please contact:
Copyright Clearance Center
Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: info@copyright.com.
NOTICE TO THE READER
The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of information
contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary
damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any
parts of this book based on government reports are so indicated and copyright is claimed for those
parts to the extent applicable to compilations of such works.
Independent verification should be sought for any data, advice or recommendations contained in
this book. In addition, no responsibility is assumed by the Publisher for any injury and/or damage
to persons or property arising from any methods, products, instructions, ideas or otherwise contained
in this publication.
This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert assistance
is required, the services of a competent person should be sought. FROM A DECLARATION OF
PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR
ASSOCIATION AND A COMMITTEE OF PUBLISHERS.
Additional color graphics may be available in the e-book version of this book.
Library of Congress Cataloging-in-Publication Data
ISBN: (cid:28)(cid:26)(cid:28)(cid:16)(cid:27)(cid:16)(cid:27)(cid:27)(cid:25)(cid:28)(cid:26)(cid:16)(cid:23)(cid:21)(cid:24)(cid:16)(cid:25)(cid:3)(cid:11)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:12)
Published by Nova Science Publishers, Inc. † New York
The first author dedicates this book to his beloved grandparents
Jolanda, Mihallaq, Anastasia and Konstantinos.
The second author dedicates this book to his mother Madhu Kumari
Regmi and Father Moti Ram Regmi.
The third author dedicates this book to his wonderful children
Christopher, Gus, Michael, and lovely wife Diana.
The fourth author dedicatesthis book to his lovely wife Rose.
Contents
GlossaryofSymbols xv
Preface xvii
1 BallConvergenceforHighOrderMethods 1
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. LocalConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 ContinuousAnalogsofNewton-TypeMethods 13
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. Semi-localConvergenceI . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Semi-localConvergenceII . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 InitialPointsforNewton’sMethod 25
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2. Semi-localConvergenceResult . . . . . . . . . . . . . . . . . . . . . . . . 27
3. MainResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4. OntheConvergenceRegion . . . . . . . . . . . . . . . . . . . . . . . . . 30
5. APrioriErrorBoundsandQuadraticConvergenceofNewton’sMethod . . 31
6. LocalConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 SeventhOrder Methods 37
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2. LocalConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 38
3. NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 ThirdOrder Schemes 49
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
viii Contents
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 FifthandSixthOrderMethods 61
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7 SixthOrderMethods 73
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8 Extended Jarratt-TypeMethods 83
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2. ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9 MultipointPointSchemes 91
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2. LocalConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10 FourthOrderMethods 101
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11 InexactNewtonAlgorithm 113
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2. ConvergenceofNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12 Halley’sMethod 119
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2. ConvergenceofHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13 Newton’sAlgorithmforSingularSystems 125
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2. ConvergenceofNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129