ebook img

Construction Program Management – Decision Making and Optimization Techniques PDF

188 Pages·2016·2.801 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Construction Program Management – Decision Making and Optimization Techniques

Ali D. Haidar Construction Program Management – Decision Making and Optimization Techniques – Construction Program Management Decision Making and Optimization Techniques Ali D. Haidar Construction Program – Management Decision Making and Optimization Techniques 123 Ali D.Haidar DaralRiyadh-EngineeringandArchitecture Riyadh SaudiArabia ISBN978-3-319-20773-5 ISBN978-3-319-20774-2 (eBook) DOI 10.1007/978-3-319-20774-2 LibraryofCongressControlNumber:2015948783 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface The recent trend in the construction industry is how to manage large and complex programs. Multiple projects being built simultaneously, as part of government or private programs, will need structured and sophisticated program management techniques in order to deliver the vast and complex building works at hand with a relatively short period. Without proper program management procedures, these often huge, complex, multi-projects can take decades to construct with draining budgets. With program management, the building works can be relatively short spanning years with significant cost reduction. Although program management methods have been applied successfully in the USA (NASA and ARMY programs as an example), Europe (Marshall Plan), and someoftheUnited Nationprograms,there havenotbeenliteraturenorresearchto sustainthetheoriesbehindthesuccessfulimplementationofthesemethodsnortheir proper and scientific know-how. All the focus has been on project management techniques with their apparent short-folds for program constructability. This book will look on the different program management methods, ranging fromsimpledecision-makingtechniquesandstatisticsanalysistothemorecomplex linear programming, and how program managers, directors, clients, stakeholders, contractors, and consultants can benefit from the availability of these different techniques. The book is unique in a way as it looks on how to apply new and developedtechniquestooptimizeforthedeliveryofprogramsmainlyinthefieldof artificial intelligence especially knowledge-based systems and genetic algorithms. Theauthor’suniqueexperienceincomplexmanagement,programmanagement, and his past research andstudiesinanalytical analysis and mathematical modeling andartificialintelligencehasinducedhimtowritethisbooktowellinformreaders about the different techniques that can be applied for future program execution. No doubt indeed, the future of the construction industry will be in how to execute programs, especially the Middle East war torn areas such as Syria, Libya, Iraq, and now Yemen.As well, African countries and Asian countries will needto beabletoexecutewell-managedprogramstobuildtheirinfrastructurewithlimited time and constraint budgets. v Contents 1 Program Management Perspective . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction to Program Management. . . . . . . . . . . . . . . . . . . . . . . . 1 Program Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 The Role of the Program Manager. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Program Management Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Necessity for the Development of Structured Systems . . . . . . . . . . . . 9 Program Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Decision-Making Approach for Program Management . . . . . . . . . . . . 13 Operations Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Significance of Operations Research. . . . . . . . . . . . . . . . . . . . . . . . . 17 Optimization Models for Program Management. . . . . . . . . . . . . . . . . 18 Statistics and Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Artificial Intelligent Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Decision-Making Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Decision Theory in Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Information Feed in Decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Program Management Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Organization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Program Organization Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Responsibilities and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 The Scalar Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 System Understanding—A Program Approach. . . . . . . . . . . . . . . . . . 36 System Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Contingency View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Open and Closed Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Decision-Making Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents Improving the Accuracy of Decision Making . . . . . . . . . . . . . . . . . . 44 Methodology and Knowledge Preparation. . . . . . . . . . . . . . . . . . . . . 44 Evaluation of Decision-Making Methods . . . . . . . . . . . . . . . . . . . . . 46 Contextual Influences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Formalization Advantages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Formalization Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Program Complexity as a Contingency Factor. . . . . . . . . . . . . . . . . . 51 Decision-Making Formalization Methods . . . . . . . . . . . . . . . . . . . . . 52 Reliability and Validity of Decision Making . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Planning and Scheduling—A Practical and Legal Approach. . . . . . 57 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Scheduling and Planning Development. . . . . . . . . . . . . . . . . . . . . . . 59 Critical Path Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Activity Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Logical Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Forward Pass and Backward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Critical Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Advantages and Disadvantages of the Critical Path Method. . . . . . . . . 70 Float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Total Float and Free Float. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Interfering Float. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Independent Float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Float Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Methods of Calculating Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Other Aspects of Time-Related Issues . . . . . . . . . . . . . . . . . . . . . . . 77 Critical Path Method’s Dynamic Nature—The Legal Approach . . . . . . 79 US Construction Case Law Pertinent to Extension of Time and Delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Standard Forms of Contract and Scheduling . . . . . . . . . . . . . . . . . . . 87 The Critical Path Method and Standard Forms of Contract . . . . . . . . . 89 The JCT Standard Form of Building Contract, 1998 Edition (JCT 98) and 2005 Edition (JCT 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 NEC3 Engineering and Construction Contract. . . . . . . . . . . . . . . . . . 91 ICE Conditions of Contract, Measurement Version, 7th Edition, September 1999 (ICE 7th) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Completion, Early Completion, and Acceleration. . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4 Mathematical Methods—Statistics and Forecasting . . . . . . . . . . . . 99 Statistics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Sampling Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Variables, Index, and Summation. . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Contents ix Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Averages or Measures of Central Tendency. . . . . . . . . . . . . . . . . . . . 102 Median. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Dispersion or Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Mean Deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Standard Mean of Deviation Is . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Sampling Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Unbiased Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Confidence Interval Estimates of Population Parameters. . . . . . . . . . . 105 Confidence Intervals of Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Delphi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Time Series Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Least Square Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Exponential Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Time Series Analysis—Decomposition. . . . . . . . . . . . . . . . . . . . . . . 114 Additive Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Multiplicative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Double Moving Averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Forecasting a Series with Trend Using a Linear Moving Average . . . . 115 Double Exponential Smoothing: Holt’s Two-Parameter Method. . . . . . 117 Curve Fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Method of Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Forecasting Methods’ Uses and Disadvantages . . . . . . . . . . . . . . . . . 123 Applications of Statistics and Forecasting Methods for Program Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5 Operations Research and Optimization Techniques . . . . . . . . . . . . 131 Operations Research—Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 131 Operations Research Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Operations Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 General Mathematical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Network Flow Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Dynamic Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Stochastic Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Combinatorial Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 x Contents Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Convex Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Heuristic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Optimization Techniques and Mathematical Programming. . . . . . . . . . 139 Linear Programming—An Introduction. . . . . . . . . . . . . . . . . . . . . . . 142 Linear Programming—Problem Formulation . . . . . . . . . . . . . . . . . . . 143 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Basic Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Graphical Solution for Linear Programming—An Example. . . . . . . . . 146 A Standard Form for all Linear Programming Problems . . . . . . . . . . . 148 Linear Programming Practical Examples in Construction . . . . . . . . . . 148 Applications of Linear Programming in Program Management . . . . . . 154 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 Techniques for Intelligent Decision Support Systems . . . . . . . . . . . 159 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Architecture and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 The Rule Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Knowledge Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Working Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 System Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Knowledge Management in Construction . . . . . . . . . . . . . . . . . . . . . 170 Knowledge-Based Systems in Program Management . . . . . . . . . . . . . 170 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Evolution Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Time–Cost Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Construction Material Delivery Schedules. . . . . . . . . . . . . . . . . . . . . 180 Resource Leveling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Finance-Based Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Chapter 1 Program Management Perspective Abstract Program management is concerned with the construction of a group of related projects, carried out to achieve a defined objective or benefit to a client, fallingundertheauspicesofaprogram.Theprogrammanagementprocessbalances the key program constraints and provides a tool for making decisions throughout the program cycle based on benchmark values, performance metrics, established procedures,andtheprogramaims.Inordertofindbettersolutionsformanyaspects of a program, including planning and scheduling, distribution of resources such as labor and staff, optimizing the procurement process and minimizing costs while achieving the program objectives, a program manager must be familiar with the fundamental methodologies of heuristics methods, operations research, and sophisticated intelligent techniques to deal with these complex issues. This book will focus on the fundamental rules in planning and scheduling for program activities,theapplicationofmethodsandtechniquesinthedecision-makingprocess for often very complex situations, operations research and optimization and mathematical modeling, and lately, the use of complex, efficient, and intelligent systems in order to provide optimal solutions to program managers. The book serves as an introduction for program managers for the above and introduces the basic elements in critical path method (CPM), statistics and forecasting methods, linear programming, knowledge-based systems, and genetic algorithms and their applications as decision-making tools in key areas in program management. Introduction to Program Management Program management applies techniques that allow organizations to run multiple related projects concurrently and obtain significant benefits from them as a col- lection. A group of related projects, not managed as a program, is likely to run off course and fail to achieve the desired outcome. Program management is a fairly new technique and as such is not always well understood. It is, however, clear that program management is an area of growing ©SpringerInternationalPublishingSwitzerland2016 1 A.D.Haidar,ConstructionProgramManagement–DecisionMaking andOptimizationTechniques,DOI10.1007/978-3-319-20774-2_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.